About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in SSSAJ

  1. Vol. 62 No. 5, p. 1197-1202
     
    Received: Mar 25, 1997
    Published: Sept, 1998


    * Corresponding author(s): aylmore@cyllene.uwa.edu.au
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2136/sssaj1998.03615995006200050007x

Estimating Microscale Spatial Distribution of Conductivity and Pore Continuity using Computed Tomography

  1. V. Rasiah and
  2. L. A. G. Aylmore 
  1. Soil Science and Plant Nutrition, Faculty of Agriculture, The Univ. of Western Australia, Nedlands, WA 6009, Australia

Abstract

Abstract

Despite the importance of information on the spatial distribution of unsaturated hydraulic conductivity (Kus) at microscale in soil, experimental determination of this property is difficult. The objectives of this study were to: (i) seek a simple, but reliable, procedure for the estimation of Kus at microscale and (ii) determine the sensitivity of the estimates to wetting-induced changes in selected structural parameters (porosity, ɛ, surface fractal dimension, D, and pore continuity, PC). Using computer-assisted tomography (CAT), spatial distributions of soil water content (θ) and changes in ɛ that occurred during wetting were monitored at 2 by 2 mm resolution at 1-cm depth increments in water-stable (WSA) and unstable aggregate (USA) columns. The Fuentes theoretical equation, which requires data on saturated hydraulic conductivity (Kɛ), θ, ɛ, and D, was used for the estimation of the spatial distribution of Kus. The spatial distribution of θ in WSA columns ranged from 0.113 to 0.327 cm3 cm-3 and from 0.175 to 0.567 cm3 cm-3 in the USA columns. The spatial distribution of ɛus ranged from 0.46 to 0.74 and was used in the computation of D and PC. Values of Kɛ ranged from 0.006 to 0.745 cm h-1. The spatial distribution of Kus ranged from 6.87 × 10-4 to 1.49 × 10-2 cm h-1 in WSA compared with 7.3 × 10-4 to 4.11 × 10-2 cm h-1 in USA. Pore continuity, θ, D, and initial aggregate diameter (x) accounted for 94 to 95% of the variability in Kus distributions. The results indicate that reliable estimates of Kus distributions at microscale can be computed from single-source CAT-derived data on θ and ɛ.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © . Soil Science Society of America