About Us | Help Videos | Contact Us | Subscriptions



This article in SSSAJ

  1. Vol. 64 No. 2, p. 600-608
    Received: Apr 30, 1999

    * Corresponding author(s): binskeep@montana.edu
Request Permissions


Rates of Microbially Mediated Arsenate Reduction and Solubilization

  1. C. A. Jones,
  2. H. W. Langner,
  3. K. Anderson,
  4. T. R. McDermott and
  5. W. P. Inskeep *
  1. Dep. of Land Resources and Environ. Sci., Montana State Univ., Bozeman, MT 59717 USA


Reduction of arsenate [As(V)] to arsenite[As(III)] influences the mobility and toxicity of arsenic (As), yet the mechanisms controlling the rate of reduction in soils and natural waters are poorly understood. The goal of this study was to determine processes affecting reduction rates of both aqueous and sorbed phase As(V). Reduction experiments were conducted anaerobically in serum bottles with a range of glucose and As(V) concentrations. Serum bottles were inoculated with microorganisms extracted directly from an agricultural soil having naturally elevated concentrations of As (unenriched population), or with a pure culture isolate obtained from the same soil after enrichment for As(V) reduction. At As(V) concentrations ranging from 6 to 600 μM, the rate of As(V) reduction by the soil isolate was first order with respect to both As(V) concentration and microbial biomass. Reduction rates of As(V) with the soil isolate were 2 to10 fold greater than in the unenriched population, suggesting As(V) reducers represented only a subset of the unenriched population. Compiled data indicated that the pure culture isolate was fermenting glucose, and potentially reducing As(V) as a detoxification mechanism. In a parallel study, reduction rates of As(V) with the unenriched population were evaluated in the presence of goethite or ferrihydrite. When redox potential decreased from 500 to near 0 mV, aqueous As concentrations decreased by approximately 30% in a goethite suspension with a high As surface coverage, yet increased by seven fold in a goethite suspension with a low As surface coverage. In a ferrihydrite suspension, aqueous As concentrations during reduction increased approximately 100 fold faster than in a goethite suspension at similar initial aqueous As(V) concentrations, corresponding to differences in Fe oxide surface areas and reductive dissolution rates. The results indicate that rates of As mobilization during reduction in soils are highly dependent on oxide surface area and As surface coverage.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2000. Soil Science SocietySoil Science Society of America