About Us | Help Videos | Contact Us | Subscriptions

Members of ASA, CSSA, and SSSA: Due to system upgrades, your subscriptions in the digital library will be unavailable from May 15th to May 22nd. We apologize for any inconvenience this may cause, and thank you for your patience. If you have any questions, please call our membership department at 608-273-8080.


Institutional Subscribers: Institutional subscription access will not be interrupted for existing subscribers who have access via IP authentication, though new subscriptions or changes will not be available during the upgrade period. For questions, please email us at: queries@dl.sciencesocieties.org or call Danielle Lynch: 608-268-4976.



This article in SSSAJ

  1. Vol. 66 No. 5, p. 1610-1619
    Received: Feb 27, 2001

    * Corresponding author(s): Jeroen.Schoorl@aio.beng.wau.nl
Request Permissions


Modeling Water and Soil Redistribution in a Dynamic Landscape Context

  1. J. M. Schoorl *,
  2. A. Veldkamp and
  3. J. Bouma
  1. Laboratory of Soil Science and Geology, Department of Environmental Sciences, Wageningen University, P.O. Box 37, 6700 AA Wageningen, The Netherlands


Soil suitability assessments for land use planning are commonly based on on-site specific topographic, soil, and climatic characteristics, and are often neglecting the effects of physical landscape processes by water. The spatial and temporal variability of the landscape requires specific input data and modeling procedures. Existing studies aiming at the landscape level often are data-driven and operating at detailed resolutions of seconds and hours for single slopes or catchments. This study aims at the coarser level of multiple catchments over a period of 10 yr. A dynamic modeling approach is applied to a study area for the effects of soil redistribution within a landscape (run-on, run-off, erosion, and sedimentation) on subsequent soil water availability. Simulation scenarios include factors of water routing, soil depth, and erodibility. Different approaches for surface run-off routing have a major influence on the magnitude and spatial patterns of soil redistribution. Also initial conditions such as soil depth, parent material, and erodibility have spatial impacts upon soil erosion and sedimentation within the landscape. Locally decreasing water storage capacity (on-site) may cause increased run-off and erosion at lower positions in the landscape (off-site). Localized soil redistribution can cause significant changes in actual soil depth and indirectly affect available soil water. The changing patterns of soil redistribution for the different scenarios are both related to modeling techniques as well as to the implemented boundary conditions. This study indicates that at the landscape scale spatial variability in for example soil properties is inherent to both the complexity of the landscape (parent material) and on-site and off-site effects of controlling processes.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2002. Soil Science SocietyPublished in Soil Sci. Soc. Am. J.66:1610–1619.