About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in SSSAJ

  1. Vol. 70 No. 3, p. 728-735
     
    Received: June 1, 2005


    * Corresponding author(s): freeman.cook@csiro.au
 View
 Download
 Alerts
 Permissions
Request Permissions
 Share

doi:10.2136/sssaj2005.0173

Determining Vertical Root and Microbial Biomass Distributions from Soil Samples

  1. Freeman J. Cook *a and
  2. Francis M. Kelliherb
  1. a CSIRO Land and Water, 120 Meiers Road, Indooroopilly, QLD 4068, Australia, and The Univ. of Queensland, St. Lucia, QLD 4067, Australia
    b Manaaki Whenua–Landcare Research, P.O. Box 69, Lincoln, New Zealand

Abstract

When vertical density distributions of root or microbial biomass are calculated using each sampling interval's midpoint as the depth coordinate, the calculated distribution is biased if it is a nonlinear function with depth. In the root biomass literature, distributions are often described by a power function R ∝ β z , where β is a decay coefficient and z is depth. A common alternative formulation is an exponential function, Re z/Z r , where Z r is a characteristic length scale. These functions are equivalent when Z r = −1/ln β, so the data according to either function may be unified. The bias can be eliminated by representing the vertical distribution with a continuous function, integrating it over the sampling interval, and using a least squares method to determine the function's parameters. The bias increased by nearly threefold when the sampling interval increased from 0.01 to 1 m. As the sampling interval increases, the bias shifts the function down the z axis. This results in the intercept increasing with increasing sampling interval. When a single profile was sampled at different intervals, the function's intercept and Z r changed. The parameter Z r changed fivefold when the sampling interval increased from 0.1 to 0.5 m, while the calculated fraction of roots above a depth of 0.1 m decreased threefold for the same change in sampling interval. Beneath a tropical forest where root biomass and microbial respiration were sampled throughout the same soil profile, the corresponding microbial and root biomass length scales averaged 0.17 m and differed by only 11%.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2006. Soil Science SocietySoil Science Society of America