About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in SSSAJ

  1. Vol. 75 No. 2, p. 553-559
     
    Received: Mar 3, 2010
    Published: Mar, 2011


    * Corresponding author(s): arampoldi@manfredi.inta.gov.ar
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2136/sssaj2010.0105

The Fate of Glyphosate in Crop Residues

  1. E. Ariel Rampoldi *a,
  2. Susana Hangb and
  3. Enrique Barriusoc
  1. a EEA INTA Manfredi Ruta Nacional no. 9 km 636 5988 Manfredi, Córdoba, Argentina
    b Univ. of Córdoba CC 509, 5000 Córdoba, Argentina
    c National Inst. of Agronomical Research, Environment and Arable Crops BP 01 78850 Thiverval-Grignon, France

Abstract

The environmental fate of glyphosate [N-(phosphonomethyl)glycine] was studied in six crop residue (CR) types, three from maize (Zea mays L.) (M1, M2, and M3) and three from soybean [Glycine max (L.) Merr.] (S1, S2, and S3). Glyphosate adsorption was characterized through isotherms. The glyphosate distribution in CRs was characterized through the balance of 14C-glyphosate radioactivity among the mineralized fraction, the extractable fractions (water and NH4OH), and the nonextractable fraction. Crop residues were characterized by elemental composition, organic C, total N, and biochemical parameters (soluble fraction, cellulose, hemicellulose, and lignin). Total microbial activity (TMA) was also assessed. Limited and reversible glyphosate adsorption on soybean and maize CRs was determined. The sorption coefficient K f index range for maize CR was 1.5 to 8.3 L kg−1 and 2.6 to 7.4 L kg−1 for soybean CR. Organic C and hemicellulose partially explained adsorption variability. The addition of mineralized and nonextractable fractions of the initial 14C-glyphosate applied on the CRs averaged 56%; however, differences were detected between soybean and maize CRs. Mineralization and nonextractable residues were 30.7 ± 11 and 32.5 ± 6% (soybean CR) and 44.3 ± 12 and 17 ± 7% (maize CR), respectively. We hypothesized that glyphosate molecules could be used initially by microorganisms as a labile C source. High variability in 14C-glyphosate mineralization was observed in all crop residues, suggesting that the magnitude of the glyphosate mineralization process would be regulated by accessibility and the lability of other carbonate sources.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2011. Soil Science SocietySoil Science Society of America