About Us | Help Videos | Contact Us | Subscriptions

Soil Science Society of America Journal Abstract - Wetland Soils

Ionic Liquid Extraction Unveils Previously Occluded Humic-Bound Iron in Peat Soil Pore Water


This article in SSSAJ

  1. Vol. 80 No. 3, p. 771-782
    unlockOPEN ACCESS
    Received: Oct 21, 2015
    Accepted: Mar 01, 2016
    Published: June 24, 2016

    * Corresponding author(s): eskane@mtu.edu
Request Permissions

  1. Timothy J. Vevericaab,
  2. Evan S. Kane *ab,
  3. Amy M. Marcarellic and
  4. Sarah A. Greend
  1. a School of Forest Resources and Environmental Science Michigan Technological Univ., Houghton, MI, 49931
    b USDA Forest Service Northern Research Station Houghton, MI, 49931
    c Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
    d Department of Chemistry Michigan Technological University Houghton, MI 49931
Core Ideas:
  • Dissolved organic matter character should be evaluated when selecting Fe quantitation methods.
  • The o-phenanthroline Method cannot consistently speciate Fe in bogs and fens.
  • Ionic liquid extraction yields superior Fe quantitation over o-phenanthroline.


Globally, peatland ecosystems store tremendous amounts of C relative to their extent on the landscape, largely owing to saturated soils which limit decomposition. While there is still considerable uncertainty regarding CO2 production potential below the water table in peatland ecosystems, extracellular Fe reduction has been suggested as a dominant pathway for anaerobic metabolism. However, colorimetric methods commonly used to quantitate Fe and partition between redox species are known to be unreliable in the presence of complex humic substances, which are common in peatland pore water. We evaluated both the standard o-phenanthroline (o-P) Method and an ionic liquid extraction (ILE) Method followed by quantitation with inductively coupled plasma optical emission spectrometry (ICP–OES) to compare total Fe recovery and Fe2+/Fe3+ ratios in four distinct peatland ecosystems, ranging from rich fen to bog. While total Fe concentrations measured with ILE and o-P were correlated, the ILE method proved to be superior in both total Fe quantitation and in separately quantifying ferric (Fe3+) and ferrous (Fe2+) iron. In peat pore water, the o-P Method underestimated Fe3+ by as much as 100%. A multivariate approach utilizing fluorescence- and ultraviolet (UV)–visable (Vis) spectroscopy identified indices of dissolved organic matter (DOM) humification and redox status that correlated with poor performance of the o-P Method in peat pore water. Where these interferences are present, we suggest that site-specific empirical correction factors for quantitation of total Fe by o-P can be created from ILE of Fe, but recommend ILE for accurate appraisals of iron speciation and redox processes.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2016. Copyright © by the Soil Science Society of America, Inc.