Comparative Mapping and Targeted-Capture Sequencing of the Gametocidal Loci in Aegilops sharonensis

Surbhi Grewal,* Laura-Jayne Gardiner, Barbora Ndreca, Emilie Knight, Graham Moore, Ian P. King, and Julie King

Abstract
Gametocidal (Gc) chromosomes or elements in species such as Aegilops sharonensis Eig are preferentially transmitted to the next generation through both the male and female gametes when introduced into wheat (Triticum aestivum L.). Furthermore, any genes, such as genes that control agronomically important traits, showing complete linkage with Gc elements, are also transmitted preferentially to the next generation without the need for selection. The mechanism for the preferential transmission of the Gc elements appears to occur by the induction of extensive chromosome damage in any gametes that lack the Gc chromosome in question. Previous studies on the mechanism of the Gc action in Ae. sharonensis indicates that at least two linked elements are involved. The first, the breaker element, induces chromosome breakage in gametes, which have lost the Gc elements while the second, the inhibitor element, prevents the chromosome breakage action of the breaker element in gametes which carry the Gc elements. In this study, we have used comparative genomic studies to map 54 single nucleotide polymorphism (SNP) markers in an Ae. sharonensis 4SshL introgression segment in wheat and have also identified 18 candidate genes in Ae. sharonensis for the breaker element through targeted sequencing of this 4SshL introgression segment. This valuable genomic resource will aide in further mapping the Gc locus that could be exploited in wheat breeding to produce new, superior varieties of wheat.

Certain Aegilops species have an evolutionary unique mechanism that ensures the transmission of specific regions of their genomes to the next generation when introduced to wheat. This phenomenon was first recognized when specific chromosomes, Gc chromosomes (Endo, 1979a) or “Cuckoo” chromosomes (Finch et al., 1984), were observed to be preferentially transmitted through both the male and female gametes in a wheat background.

Gc chromosomes or elements have been identified in several S genome species on different chromosomes (Endo, 1982, 1985; Maan, 1975; Miller et al., 1982; Tsujimoto, 1994; Tsujimoto and Tsunewaki, 1984) as well as in the C genome (Endo, 1979b, 1988; Endo and Tsunewaki, 1975; Endo and Katayama, 1978). A Gc element has also been reported on chromosome 7el of Thinopyrum ponticum (Podp.) Barkworth & D. R. Dewey (formerly Agropyron elongatum; Kibirige-Sebunya and Knott, 1983) and on chromosome 4Mg of A. geniculata (Kynast et al., 2000).

While the Gc action in each of these species results in the preferential transmission of each of these chromosomes,

S. Grewal, B. Ndreca, I. P. King, and J. King, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK; L-J. Gardiner, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK; E. Knight and G. Moore, Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK. Received 6 Sept. 2016. Accepted 27 Jan. 2017. *Corresponding author (surbhi.grewal@nottingham.ac.uk). Assigned to Associate Editor Peter Langridge.

Abbreviations: BAM, binary alignment map; DAPI, 4′,6-diamidino-2-phenylindole; EMS, ethyl methanesulfonate; EST, expressed sequence tag; FISH, fluorescence in situ hybridization; FITC, Alexa Fluor 488; Gc, gametocidal; GATK, Genome Analysis ToolKit; GISH, genomic in situ hybridization; InDel, insertion/deletion; KASP, Kompetitive Allele Specific PCR; NGS, next-generation sequencing; PCR, polymerase chain reaction; PM, pseudomolecule; SNP, single nucleotide polymorphism; SSC, saline-sodium citrate; TRITC, Alexa Fluor 594.
there is evidence that the elements (alleles) or mechanisms responsible for the phenomenon between and within species are different (Endo, 1982, 1990).

The mode of action of Gc chromosomes is such that plants homozygous for the Gc chromosomes or elements do not show gametic abortion. However, individuals that are heterozygous for the Gc element produce two types of gametes: gametes that either carry or lack the Gc element. Both male and female gametes that lack the Gc chromosome or elements undergo severe chromosome breakage (Finch et al., 1984; Nasuda et al., 1998) and, depending on the Gc chromosome or element, are generally not viable. As a result, only gametes carrying the Gc element are transmitted to the next generation. Thus, those traits linked with Gc elements are found in all offspring without the requirement for selection, a genetic phenomenon that may have significant practical application in plant breeding (Endo and Gill, 1996; King et al., 1991).

The preferential transmission of the Gc chromosome 4S in Ae. sharonensis has been hypothesized to be associated with two phenotypes controlled by at least two elements: the breaker element and the inhibitor element (Endo, 1990; Tsujimoto, 2005). The breaker element, Gc2 (Friebe et al., 2003) or GcB (Knight et al., 2015), causes extensive chromosomal breakage and hence lethality of gametes, which are generated from plants carrying a Gc chromosome, but do not themselves carry the Gc chromosome (Finch et al., 1984; King and Laurie, 1993; Nasuda et al., 1998). The role of the second element, the inhibitor element, is to prevent the chromosomal breakage action of the breaker element in gametes that have retained the Gc elements (Endo, 1990; Friebe et al., 2003; Tsujimoto, 2005).

Aegilops sharonensis chromosome 4S is homoeologous with Group 4 in wheat and compensates well for regions of wheat chromosomes 4B (Friebe et al., 2003) and 4D (King et al., 1991), as well as whole chromosome substitutions for 4B and 4D in wheat (Miller et al., 1982). Friebe et al. (2003) developed a knock-out mutant of the breaker element Gc2 on Ae. sharonensis chromosome 4S (T4B-4SshL#1, which has lost the chromosome breaker function, but has retained the inhibitor element). The Ae. sharonensis 4S breyer element has been previously mapped by C-banding to the distal end of the long arm (Endo, 2007) and has been shown, through deletion studies, to be limited to a small region immediately proximal to a subtelomeric heterochromatin block at the distal end of the chromosome (Knight et al., 2015).

King et al. (1996) developed two hexaploid wheat introgression lines (ILs, Brigand 8/2 and Brigand 8/9) that involved the translocation of the distal end of the long arm of chromosome 4S (4Scoll) from Ae. sharonensis onto the distal end of the long arm of chromosome 4D of Triticum aestivum (4DS-4DL-4Ssh translocation). A strategy for mapping the Gc region of 4DS-4DL-4Ssh translocation involving the irradiation of populations of these ILs and screening those with SNP markers specifically designed to the 4Ssh introgression segment for deletions has been undertaken (Knight et al., 2015). This work resulted in the development of 3 SNP markers within the Gc region that contained the GcB breaker element.

The use of comparative mapping based on syntenies, or the identical order of genetic loci between genomes of distantly related species, is an important approach for identifying gene positions and marker linkages in large genome species through comparisons with small genome model species like rice (Oryza sativa L.; Ben-netzen and Freeling, 1993; Han et al., 1998; Moore et al., 1993). However, there are several potential limitations involved in this approach, including the observation that many traits of economic interest like disease resistance, and in our study the Gc elements, may be species specific and therefore not detectable or even absent in the simpler genomes. In addition, marker presence or order may not be conserved (Foote et al., 1997; Han et al., 1998) and marker polymorphism is often limited.

The genome of hexaploid wheat has been examined by targeted-capture sequencing, which is used to enrich for sequences of interest before carrying out next-generation sequencing (NGS) using SureSelect, an in-solution based technology (Saintenac et al., 2011) and using a NimbleGen array (Winfield et al., 2012).

The aim of the current study was to further map the subtelomeric region of 4S consisting of the Gc elements, located on the 4DS-4DL-4Ssh translocation, through characterization of deletion mutants and perform comparative studies of that region of 4Ssh with wheat, rice, and Brachypodium distachyon P. Beauv. Using the smaller introgression segment from line T4B-4Ssh#1 (Friebe et al., 2003) and comparative genomics, the Gc region was further characterized with 15 markers. We have also used target-capture sequencing based on synteny between Ae. sharonensis and wheat to enable sequence investigation and variant calling in the 4Ssh region of the T4B-4Ssh#1 translocation segment carrying the knock-out mutation of Gc2, thereby providing 18 candidate gene sequences in Ae. sharonensis for the Gc breaker element.

Materials and Methods

Plant Material

Two Triticum aestivum ‘Brigand’ ILs (Brigand 8/2 and Brigand 8/9), each carrying a 4DS-4DL-4Ssh translocation from Ae. sharonensis (AS) accession 2170001 (King et al., 1991), were individually crossed with T. aestivum ‘Huntsman’, using Huntsman as the pollen donor, resulting in the generation of F1 seeds that were hemizygous for the Ae. sharonensis introgression (Knight et al., 2015). Two deletion mutant populations were created by γ irradiation of F1 seed, with a dose 300 Gy, at the International Atomic Energy Agency’s Laboratories (Seibersdorf, Austria; protocol no. FN662).

Other lines used in various experiments included T. aestivum ‘Chinese Spring’ (CS); CS(4B)4Ssh substitution line where wheat chromosomes 4B are missing and replaced with the Ae. sharonensis 4Ssh chromosomes (Miller et al., 1982); T4B-4Ssh#1 (Friebe et al., 2003),
Genetics, Kyoto University, Kyoto, Japan. was kindly provided by Dr. Nasuda, Laboratory of Plant grewal et al.: mapping used for the BLAST search.

the products were orthologous to the original sequence genome to confirm that the wheat BLAST hit result was BLASTN searched back assembly by Bouyioukos et al. (2013). The sequence of ing sequences had been obtained from a transcriptome Ae. sharonensis and also from B. distachyon chromosome Os3S, available in public databases) that had the best BLAST ley (McIntyre et al., 1990), and pAs.1 (Rayburn and Gill, 1986) were labeled with Alexa Fluor 488–5-dUTP (green coloration) and Alexa Fluor 594–5-dUTP (red coloration), respectively, and hybridized to the same set of slides sequentially.

Slides were initially probed using labeled genomic DNA of Ae. sharonensis (100 ng) and fragmented genomic DNA of Chinese Spring (2000 ng) as blocker to detect the Ae. sharonensis introgressions. Probe to block was in a ratio of 1 to 20 [the hybridization solution was made up to 10 μL with 2 × saline-sodium citrate (SSC) in 1 × Tris-E ethylenediaminetetraacetic acid]. The slides were then bleached for multicolor GISH and reprobed with labeled DNAs of Triticum urartu (100ng) and Ae. taushii (200 ng) and fragmented DNA of Ae. speltoi-des (5000ng) as blocker in the ratio 1:2:50 to detect the AABBDDD genomes of wheat.

Slide denaturation was performed at 80°C for 5 min, and the probes were hybridized at 55°C for 16 h. Posthybridization, all slides were washed with 2× SSC buffer for 1 min and counter-stained with DAPI (4',6-diamidino-2-phenylindole). Slides were examined using a Leica DM5500B epifluorescence microscope with filters for DAPI, Alexa Fluor 488 (FITC) and 594 (TRITC) and photographs were taken using a Leica DFC 350FX digital camera. For each metaphase, three exposures were taken, one each for DAPI, FITC, and TRITC, and treated to decrease background noise and to increase the resolution of the signals. These images were combined into one final image using the Leica Application Suite package.

Marker Development

One set of primer pairs were designed from wheat or barley (Hordeum vulgare L.) expressed sequence tags (ESTs; available in public databases) that had the best BLAST hit against coding sequences from the distal end of rice chromosome Os3S, B. distachyon chromosome Bd1L, and also from Ae. sharonensis accession 1644, where coding sequences had been obtained from a transcriptome assembly by Bouyioukos et al. (2013). The sequence of the wheat BLAST hit result was BLASTN searched back against the rice or B. distachyon genome to confirm that the products were orthologous to the original sequence used for the BLAST search.

Another set of primer pairs were designed from the survey sequence of genes on the distal end of wheat 4BL/4DL (Mayer et al., 2014). Both sets of primer pairs were tested for polymorphisms between Brigand, Chinese Spring, and Ae. sharonensis alleles on ILs T4B-4S#1, 8/2, and 8/9.

All primers were initially tested by polymerase chain reaction (PCR) amplification (using a touchdown program: 95°C for 5 min, then 10 cycles of 95°C for 1 min, 65°C for 30 s [1°C per cycle] and 72°C for 2 min, followed by 40 cycles of 95°C for 1 min, 58°C for 30 s, and 72°C for 2 min) on genomic DNA, and the amplification products were run on a 1.5% agarose gel. The amplified bands were cut from the gel, cleaned using the NucleoSpin Gel Extraction Kit (Macherey-Nagel, Düren, Germany) and sequenced (Source Biosciences, Exeter, UK) for SNP discovery. The resulting sequences were characterized for SNP markers between Brigand and Ae. sharonensis, and these SNPs were confirmed by their presence in the sequences of ILs T4B-4S#1, 8/2, and 8/9. When SNP markers were confirmed they were converted, where possible, into high-throughput KASP assays (Kompetitive Allele Specific PCR, LGC Genomic, Middlesex, UK).

Marker names indicate the species source from which they were obtained: OsBBL10 (Oryza sativa), BD106 (B. distachyon), AS_17314 (Ae. sharonensis), and WHEAS1 (wheat; T. aestivum).

Genotyping and Phenotyping of Y300 M1 Population

DNA was extracted from leaf material of M1 plants at the 2- to 3-leaf stage, according to the Somers and Chao protocol (http://maswheat.ucdavis.edu/PDF/DNA0003.pdf, verified 9 Apr. 2017, original reference in Pallotta et al., 2003). All KASP assay amplification and analyses of the M1 DNA samples was performed by LGC Genomic, UK, and the results were viewed on SNPViewer software (LGC Group, UK). Genotyping through sequencing was performed on M1 DNA samples with developed sequencing markers through PCR amplification and subsequent sequencing of the amplification products, as described above.

The observation of fertility of spikes confirmed the presence or absence of the Gc locus; that is, lines retaining the wild-type locus would be semisterile, while the presence of fertile spikes indicated the potential loss of the Gc function (presumably as a result of a deletion induced by irradiation). Spike fertility was measured as the percentage of florets that contained well-developed seeds. Only the two outermost (oldest) florets within each spikelet were counted for a maximum of four spikes per M1 plant. Undersized florets at the top and bottom of the spike were not included in the calculations. Parental plants of Huntsman and Brigand ILs 8/2 and 8/9 were grown as controls alongside each batch so that environmental effects on spike fertility could be taken into account. Adjustments were made to the fertility results by multiplying the mutant line fertility percentage by 100.
and then dividing it by the fertility percentage for the controls. An average of approximately 50% viable seeds indicated that the breaker element was present since it would cause abortion of around half of the gametes.

Comparative Mapping

Where *Ae. sharonensis* sequences were generated from mapped SNP or insertion/deletion (InDel) markers or were obtained through the transcriptome assembly (Bouyioukos et al., 2013), the sequences were BLASTed against the complete pseudomolecule (PM) assemblies for rice (MSU, 2011), *B. distachyon* (Joint Genome Institute, 2017), the ordered PMs for wheat (EMBL-EBI, 2016a), and against the barley genome assembly (EMBL-EBI, 2016b; International Barley Genome Sequencing Consortium, 2012) to generate comparisons with these species. In each case, only the most significant BLAST hit result (at least 90% sequence identity on at least 100 bp) was used to assign putative orthology between the *Ae. sharonensis* marker sequences and the PM sequences for the four comparison species. Figure 3 was drawn using Circos (Krzywinski et al., 2009) to compare the synteny between the virtual order of the *Ae. sharonensis* markers with orthologous genes identified in rice, *B. distachyon*, wheat, and barley.

Capture Assay Design

Targeted sequence capture in hexaploid wheat Chinese Spring and in 4S^{ht} of *Ae. sharonensis* was performed using Agilent’s SureSelect solution phase hybridization assay. The capture array was designed in collaboration with Agilent Technologies (Santa Clara, CA) and comprised 120-mer biotinylated oligonucleotide baits, each overlapping by 20 bases and thus achieving twofold coverage of the target sequences. RNA baits were designed from a subset of 143 coding sequences from *Ae. sharonensis* transcriptome assembly sequences (Bouyioukos et al., 2013) homologous to genes at the distal end of wheat 4BL/4DL (Mayer et al., 2014) for the Agilent SureSelect CustomXT kit. All wheat genome DNA sequences were compared with each other to select only one representative homeologous copy for each gene.

Construction of Genomic DNA Libraries, Hybridization, and Sequencing

Four lines were included in the targeted sequence capture experiment: Chinese Spring, CS(4B)4Sth, T4B-4Sth-#1, and T4B-4Sth. Genomic DNA isolated from 3-wk-old seedlings (as described above) was used for library construction. DNA concentration was determined spectrophotometrically using a Nanodrop-1000 (Thermo Scientific, Pittsburgh, PA).

DNA-library construction was performed by Source Biosciences, UK. For each genotype, 200 ng of genomic DNA dissolved in 50 μL of water was fragmented to an average size of 200 bp by 15 min of sonication on ice at maximum intensity (Virsonic 50, Virtis, Warrington, PA). The following steps, fragment end-repairing, A-tailed ligation, adaptor’s ligation, and final PCR, were performed according to the standard protocol of Agilent. The DNA fragments that had adaptor molecules on both ends underwent 10 cycles of PCR to amplify the amount of prepared material. Amplified libraries were then individually hybridized and captured using the developed SureSelect Capture kit using Agilent’s standard protocol. Captured libraries underwent 12 cycles of PCR to amplify the amount of captured DNA, and to also add the specific index sequences to each library. The resulting libraries were then validated using the Agilent 2100 Bioanalyzer to confirm the molarity and size distribution. The libraries were diluted to 2 nM and pooled in to one. The pool was validated using the Agilent 2100 Bioanalyzer to confirm the size distribution prior to sequencing. The average size of the libraries was 350 bp. The pool was loaded at a concentration of 8 pM onto an Illumina MiSeq flow cell v.2. Samples were then sequenced using 150 bp paired-end runs on a MiSeq instrument. The unprocessed reads were submitted to the European Nucleotide Archive (http://www.ebi.ac.uk/ena, verified 9 Apr. 2017) under project accession number PRJEB14397.

Sequence Data Trimming, Filtering, Assembly, Variant Calling, and Viewing Alignments

Adaptor and quality trimming and filtering of Illumina reads was performed using Skewer (v.1) by Source Biosciences, UK. Trimming settings were adjusted for variant calling. The trimmed reads for T4B-4Sth were assembled into contigs using CLC assembly cell (v.4.2.0) and used as a reference genome. The trimmed reads for the other samples were mapped onto this de novo assembled reference sequence with Bowtie (v.2.2.5). To remove variant prediction bias caused by PCR artifacts, reads were deduplicated by using Picardtools (v.1.130) prior to variant calling. Deduplicated reads in BAM (binary alignment map) format were then realigned around InDels to minimize misalignments using the Genome Analysis ToolKit (GATK) standard pipeline (v.3.5). These reads were then used for calling single nucleotide variants and small insertions or deletions present in each sample, when compared with the reference sequence, using the GATK Haplotype Caller. SNP calls were finally filtered using a minimum quality of 30 and depth of 2. The GATK’s GenotypeGVCFs tool was then used to correlate genotype calls across the samples. Integrative Genomics Viewer (IGV v.2.3.58) was used to view the BAM alignment files to confirm the presence or absence of SNPs in samples mapped onto the reference genome.

Results

In Situ Hybridization of the 4S^{ht} Introgression

Two sets of in situ hybridization experiments were performed to confirm the presence of *Ae. sharonensis* introgressions in the various ILs used in this study. Initially, the introgressions in ILs Brigand 8/2 and 8/9
were confirmed with treatment by FISH probes followed by multicolor GISH. In the second experiment, the presence of the Ae. sharonensis introgression in IL T4B-4Ssh and its EMS-mutant counterpart was detected by a genomic DNA probe of Ae. sharonensis followed by multicolor GISH to indicate the wheat chromosome containing the translocation.

The presence of the Ae. sharonensis introgression in T. aestivum cv. Brigand was confirmed by FISH and GISH of chromosome spreads at metaphase from root tips as shown in Fig. 1. In situ hybridization was performed on Brigand wheat; ILs Brigand 8/2 and 8/9; a 4B-4Ssh substitution line in Chinese Spring background CS(4B)4Ssh, and on the Ae. sharonensis accession used for making the introgression and substitution lines. FISH probes pSc119.2, a rye repetitive DNA sequence (McIntyre et al., 1990), and pAs.1, a repetitive DNA sequence from Ae. tauschii (Rayburn and Gill, 1986), were used to distinguish between Ae. sharonensis and wheat chromosomes by analyzing the different fluorescence patterns in the parental lines, Ae. sharonensis (Fig. 1b), and Brigand (Fig. 1d), and in the substitution line CS(4B)4Ssh (Fig. 1c). This karyotypic analysis (as compared with Chinese Spring in Fig. 1a; Tang et al., 2014) enabled the identification of the pair of 4D chromosomes in Brigand and the translocated 4SshL chromosome segment (in the 4D/4SshL translocation) in ILs Brigand 8/2 and 8/9 (identified by arrows in Fig. 1d, 1e, and 1f, respectively). Together, the two FISH probes allowed identification of all 21 homologous chromosomes pairs in both lines of
The 4Ssh chromosome segment in ILs Brigand 8/2 and 8/9 showed a strong signal for probe pSc119.2 at its distal end (Fig. 1e and 1f). This matches the one present at the distal end of the chromosomes from Ae. sharonensis (Fig. 1b). The same strong signal was also present on chromosome 4S in the CS(4B)4S substitution line (identified by arrows in Fig. 1c) but is absent in chromosome 4D of Brigand (identified by arrows in Fig. 1d). Multicolor GISH, which separates the chromosomes of A (green), B (blue-purple), and D (red) genomes of wheat, showed the presence of the Ae. sharonensis B-genome related genomic content at the distal end of chromosome 4D of ILs Brigand 8/2 and 8/9 (Fig. 1h and 1i), which was absent in wild-type Brigand wheat (Fig. 1g).

A different approach was used to detect the Ae. sharonensis introgressions in IL T4B-4S*. GISH with a genomic DNA probe of Ae. sharonensis was performed on Ae. sharonensis, the CS(4B)4S* substitution line and ILs T4B-4S* and T4B-4S*#1 followed by multicolor GISH on these lines. Figure 2 shows the Ae. sharonensis chromosomes giving a strong signal when probed with its own genomic DNA (Fig. 2a). The probe also clearly detects the 4S* chromosome in the CS(4B)4S* substitution line as indicated by arrows in Fig. 2b. Both ILs T4B-4S* and T4B-4S*#1 also showed the presence of Ae. sharonensis-derived chromatin, reported to be 4S*. (Friebe et al., 2003; Nasuda et al., 1998), at the distal ends of two wheat chromosomes as indicated by arrows in Fig. 2c and 2d, respectively. The 4S* translocations were confirmed to be at the distal ends of B-genome (blue-purple) chromosomes, reported to be chromosome 4B (Friebe et al., 2003; Nasuda et al., 1998), as indicated by multicolor GISH in Fig. 2e–2f.

Characterization of the Gc Introgression from Ae. sharonensis

Six-hundred-and-seventy new primer pairs were designed, 430 from wheat and barley ESTs (Primer Set 1) and 240 from the wheat survey sequence of chromosome 4BL/4DL (Primer Set 2), and tested for the production of amplification products from all parental genotypes Brigand, Chinese Spring, and Ae. sharonensis, and the ILs Brigand 8/2 and 8/9 and T4B-4S*#1. Approximately 10% of the primers designed were successful in producing a SNP (54) or an InDel (14) between the parental genotypes, which also transferred to all or some of the ILs. Of these 68 markers, only 15 markers (11 SNPs and 4 InDelS) showed polymorphisms between the parent genotypes and all the ILs. The rest of the markers had polymorphisms that transferred to ILs Brigand 8/2 and 8/9, but not to IL T4B-4S*#1. Out of the 54 SNP markers developed, 30 (21 from Primer Set 1, and 9 from Primer Set 2) were converted to KASP assays, and the remaining 24 SNPs (22 from Primer Set 1 and 2 from Primer Set 2) were used as sequencing markers (Supplemental Table S1) to genotype the Y300 irradiated M1 population.

A total of 2350 hybrid F1 (M1) seeds from two crossing populations were irradiated with a dose 300 Gy (1536 seeds from the IL Brigand 8/2 × Huntsman cross, and 814 seeds from the IL Brigand 8/9 × Huntsman cross). The M1 seeds germinated at a rate of 70.1%, and these plants were further screened for deletions. From both Y300 mutant populations, 1658 plants were phenotyped for spike fertility and genotyped with 30 KASP assays and 24 sequencing markers to reveal 16 lines carrying deletions of varying sizes in the 4S* segment as shown in Fig. 3. The presence of a homozygous wheat allele (–/–) for the marker indicated that the marker was deleted in the 4S* introgression segment, whereas the presence of a heterozygous call (+/) showed that the marker was present within the introgression and hence the introgression segment at that region does not have a deletion within it. The whole Ae. sharonensis segment had been deleted in two of these lines (lines 89_118 and 89_131, Fig. 3), and thus they were omitted from further investigation. The Ae. sharonensis SNP markers were further ordered in the 4S* introgression segment by comparing the deleted markers in the different deletion segments and through comparative mapping with other crop species as subsequently explained.

Thirty of the 1658 M1 plants showed high spike sterility where 2 or more spikes were completely sterile, and 1614 lines showed semisterility (40–60% seed set). Of the 16 deletion lines identified, four showed restoration of fertility, that is, 80 to 100% fertile spikes; 2 were sterile, and the rest were semi-sterile (Fig. 3). The parental ILs 8/2 and 8/9 showed fertile spikes due to homozygosity of the Gc elements and the T4B-4S*#1 line has been previously shown to have fertile spikes (Friebe et al., 2003).

The presence of only 11 SNP markers within the T4B-4S*#1 line (shown in yellow in Fig. 3) indicated that the Gc loci-carrying introgression in this line is much smaller than the 4S* translocation in ILs 8/2 and 8/9 that carried all the SNP markers tested.

Synteny-Based Approaches to Establish a Putative Gene Order along Ae. sharonensis 4S*

Using the information from the above genotyping on the M1 population and the synteny between Ae. sharonensis 4S* marker sequences and genomic sequences of rice chromosome 3, B. distachyon chromosome 1, wheat chromosome 4B, and barley chromosome 4, we were able to propose a rough order of markers along the 4S* introgression segment. Among the 68 markers developed in the 4S* segment, 57 orthologous genes were identified in rice, 61 in B. distachyon, 38 in wheat, and 51 in barley (Supplemental Table S2). The 14 InDel markers that were not used for genotyping were ordered purely based on synteny with rice and B. distachyon since they gave the maximum orthologous gene hits.

Figures 4 and 5 show the comparison of collinearity between chromosome segments from all four species, individually with the Ae. sharonensis 4S* segment from ILs 8/2 and 8/9. Figure 4a shows the syntenic relationship between 4S* and rice Os3S with large ribbons showing
significant synteny. However, twists within these ribbons indicate that the markers are reciprocally mapped and even though they retain collinearity within these ribbons, their nonconsecutive placement along Os3S indicates potential gene rearrangements in *Ae. sharonensis* 4SshL compared with rice. Similarly, Fig. 4b shows significant synteny between *Ae. sharonensis* 4SshL and *B. distachyon* Bd1L. However, groups of reciprocal markers (indicated by twisted ribbons) on 4SshL are noncollinear compared with Bd1L as indicated by the various criss-cross patterns.
Fig. 3. Genotypes of introgression lines (ILs) and M₀ deletion lines using 30 KASP (LGC Genomic, UK) assays and 24 sequencing markers with respective spike fertility data. –/– in blue represents the homozygous wheat allele, and ± in green represents the *Aegilops sharonensis* allele, heterozygous with the wheat allele. The markers in yellow at the bottom represent the smaller size of the 4S shL introgression in IL T4B-4Ssh#1. Below each line is the respective percentage of viable seeds in spikes of these lines and is represented as percentage of spike fertility.
Fig. 4. Schematic representation of the syntenic relationships between *Aegilops sharonensis* 4SshL segment and the orthologous chromosomes in rice and *Brachypodium distachyon*. (a) Rice Os3S. (b) *B. distachyon* Bd1L chromosomes in which syntenic links were identified with the 4SshL segment are represented with orange and green colored lines, respectively. Ribbons represent the syntenic regions identified with each species while twists within the ribbons indicate reciprocally mapped groups of markers. Marker names are indicated as ordered on the 4SshL segment and corresponding orthologous gene names for both species is indicated where available. Black regions of the chromosomes correspond to the telomeres of *Ae. sharonensis* 4SshL, rice Os3S and *B. distachyon* Bd1L. The yellow segment around the distal end of 4SshL represents the smaller introgression region in introgression line T4B-4SshL#1.
Fig. 5. Schematic representation of the syntenic relationships between Aegilops sharonensis 4SshL segment and the orthologous chromosomes in wheat and barley. (a) Wheat 4BL. (b) Barley 4HL chromosomes in which syntenic links were identified with the 4SshL segment are represented with blue and lilac colored lines, respectively. Large ribbons and individual colored lines represent the syntenic regions identified with each species while twists within the ribbons indicate reciprocally mapped groups of markers. Markers names are indicated as ordered on the 4SshL segment and corresponding orthologous gene names for both species is indicated where available. Black regions of the chromosomes correspond to the telomeres of Ae. sharonensis 4SshL, wheat 4BL, and barley 4HL. The yellow segment around the distal end of 4SshL represents the smaller introgression region in introgression line T4B-4SphL#1.
of ribbons, but markers retain collinearity within the group. Eleven nonsyntenic genes were found to be orthologous in rice, and seven in \textit{B. distachyon}.

Figures 5a and 5b show comparison in synteny between \textit{Ae. sharonensis} 4S\textsubscript{shL} and wheat (\textit{T. aestivum}) chromosome 4B and barley chromosome 4, respectively. Small groups of markers (between 2 and 13) are syntenic between these genomes as indicated by large ribbons and maintain collinearity. However, unlike rice and \textit{B. distachyon}, there is potentially significant gene rearrangement in \textit{Ae. sharonensis} 4S\textsubscript{shL}, as compared with wheat and barley, indicated by individual colored links, representing a single marker on 4S\textsubscript{shL}, that cross map to non-collinear positions on wheat and barley chromosomes. Two nonsyntenic genes were found to be orthologous in wheat, and three in barley.

Illumina Sequencing and De Novo Assembly

Overlapping 120-mer RNA baits were designed to target approximately 1 Mb of sequence selected from \textit{Ae. sharonensis} sequences (Bouyioukos et al., 2013) homologous to genes at the distal end of wheat 4BL/4DL (Mayer et al., 2014). Best blast hit analysis of genomic DNA of 153 genes at the distal end of wheat 4BL/4DL against the \textit{Ae. sharonensis} whole-transcriptome assembly sequences (Bouyioukos et al., 2013) resulted in the identification of 143 \textit{Ae. sharonensis} exonic sequences (Supplemental Table S3). These sequences were used to design 11,924 unique probes (Supplemental Table S4). A majority of the probes were replicated to produce the RNA bait library for the Agilent SureSelect CustomXT kit consisting of a total of 22,996 overlapping probes.

Table 1 shows the summary of sequencing and read-mapping data for each sample. The high-quality reads from T4B-4S\textsubscript{sh}, spanning 26,181,499 bp, were assembled into 66,517 contigs with an average length of 394 bp and an N\textsubscript{50} length of 400 bp.

Variant Calling and Unique SNP discovery

To find SNPs unique to the EMS-mutated T4B-4S\textsubscript{sh}#1 line, known to have a point mutation in the Gc breaker element, variant calling was performed on this line using the nonmutated T4B-4S\textsubscript{sh} line as a reference genome. 26,572 homoygous SNPs were discovered between the two lines of which 9131 were of the EMS-type (G-A or C-T transitions; Greene et al., 2003). When these SNP positions were compared with those obtained for CS(4B)4S\textsubscript{sh} and Chinese Spring with the same reference genome, 1231 were found to have the reference SNP allele in CS(4B)4S\textsubscript{sh}, but were unmapped in Chinese Spring. These SNPs are therefore unique to T4B-4S\textsubscript{sh}#1 and 523 (42.5%) were of EMS-type. Focusing on those SNPs that were located on chromosome 4BL or those in regions with no alignment to the Chinese Spring reference, only 22 candidate EMS SNP positions across 18 contigs were identified, resulting in 18 potential candidate genes in \textit{Ae. sharonensis} for the breaker element of the Gc locus. To distinguish EMS-induced mutations, that were present in one of the three lines, from homeologous and species-specific SNPs, which would be present in all three lines, a filter was applied to identify mutations as those SNPs with at least 80% allele frequency in T4B-4S\textsubscript{sh}#1, but no higher than 20% in the reference and CS(4B)4S\textsubscript{sh} lines with a mapping depth of 0 in Chinese Spring and with at least one read supporting the variant call. The results of these tests are summarized in Table 2.

The SNPs detailed in Table 2 were defined as synonymous or nonsynonymous where possible. The 18 reference contigs from which the SNPs were derived were used in a BLASTX alignment of the translated nucleotide query to the BLAST nr protein database (Altschul et al., 1990) to determine the potential for translation of the SNP region and the reading frame for translation as per previously reported methodologies (Gardiner et al., 2015). Six of the SNPs were predicted as nonsynonymous using this methodology, their predicted protein changes are detailed in Table 2 and one such SNP is shown in Fig. 6.

Discussion

The in situ hybridization work indicates that the \textit{Ae. sharonensis} 4S\textsubscript{shL} genomic content is related to the B genome. This is supported by the presence of the 4S\textsubscript{shL} translocation on chromosome 4B of Chinese Spring in T4B-4S\textsubscript{sh} (Nasuda et al., 1998). However, recent work has indicated that some species in the S genome, including \textit{Ae. sharonensis}, might be more closely related to the D genome of hexaploid wheat as compared with the B genome as originally thought (Marcussen et al., 2014). This theory is supported by the presence of the 4S\textsubscript{shL} translocation in IL Brigand 8/2 and 8/9 on chromosome 4D.

Previous work has been done to produce a genetic linkage map of \textit{Ae. sharonensis} (Olivera et al., 2013). However, of the 10 linkage groups produced using 389 DArT and SSR markers, four were assigned to chromosomes 15\textsubscript{sh}, 25\textsubscript{sh}, 35\textsubscript{sh}, and 65\textsubscript{sh}, but none were identified as chromosome 4S\textsubscript{sh}. Thus, it was difficult to establish a set of markers that could be used to characterize the 4S\textsubscript{shL} ILs from the outset. Identification of the approximate gene content of the 4S\textsubscript{shL} terminal region was attempted through synteny between \textit{Triticaceae} chromosome group 4, \textit{B. distachyon} chromosome 1, and rice chromosome 3. Initially, the markers were ordered using this synteny. However, preliminary work done on mapping of SNP markers designed between \textit{Ae. sharonensis} accessions 1644 and 2232 [resistant and susceptible to race TTSK (Ug99)] of stem rust pathogen \textit{Puccinia graminis} f. sp.
Bouyioukos et al., 2013] produced a genetic map of 4Ssh (Yu et al., unpublished data, 2013; Yu et al., 2017) that was not completely collinear with rice, B. distachyon, and barley. These significant differences in gene arrangements and deletions only gave an initial tentative marker order that was then further fine-tuned through mapping of the markers in the deletion mutants of the Y300 population. However, the initial marker order allowed selection of KASP assays that were spread evenly across the 4Sssh introgression segment.

To screen for novel deletion lines with different breakpoints and thereby define more closely the region containing the Gc elements, it was necessary to develop PCR markers for loci dispersed within the 4SsshL introgression. At the initiation of this project, little genomic sequence information was available for wheat and therefore the Primer Set 1 design was based purely on cDNA sequences. Toward the latter half of the project, publication of the Ae. sharonensis transcriptome assembly and the wheat survey sequences allowed design of Primer Set 2. Out of the 68 markers developed, 54 were used to genotype the M1 population to pick out deleted segments in the introgressions and order the markers further within the 4SsshL segment. After establishing a marker order that fitted well with synteny and the deletions, it was apparent that even though there is considerable conservation of synteny among the species, the micro-collinearity of genes within 4SsshL with rice, B. distachyon, wheat, and barley was extensively rearranged within the terminal region of 4SsshL, especially compared with the latter two genomes, due to inversions. This is consistent with the reported decrease in synteny levels in the distal regions

<table>
<thead>
<tr>
<th>Contig name</th>
<th>Position</th>
<th>REF</th>
<th>ALT</th>
<th>Raw depth</th>
<th>Variant allele frequency</th>
<th>SNP region</th>
<th>Predicted protein change</th>
<th>Associated protein (BLASTX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>contig_14317</td>
<td>409</td>
<td>G</td>
<td>A</td>
<td>4</td>
<td>100.0</td>
<td>Exon</td>
<td>—</td>
<td>Hypothetical protein TRHR3_21892 (T. urartu)</td>
</tr>
<tr>
<td>contig_18374</td>
<td>248</td>
<td>G</td>
<td>A</td>
<td>13</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_26579</td>
<td>67</td>
<td>C</td>
<td>T</td>
<td>2</td>
<td>100.0</td>
<td>Exon</td>
<td>—</td>
<td>Pentatricopeptide repeat-containing protein (PPR) At2g56530-like (B. distachyon)</td>
</tr>
<tr>
<td>contig_27312</td>
<td>157</td>
<td>C</td>
<td>T</td>
<td>3</td>
<td>100.0</td>
<td>Exon</td>
<td>—</td>
<td>Wall-associated receptor kinase 3 (Ae. tauschii)</td>
</tr>
<tr>
<td>contig_26992</td>
<td>207</td>
<td>C</td>
<td>T</td>
<td>5</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>Hypothetical protein F775 19782 (Ae. tauschii)</td>
</tr>
<tr>
<td>contig_30909</td>
<td>148</td>
<td>C</td>
<td>T</td>
<td>12</td>
<td>100.0</td>
<td>Exon</td>
<td>—</td>
<td>Valine—Isoleucine</td>
</tr>
<tr>
<td>contig_39789</td>
<td>78</td>
<td>G</td>
<td>A</td>
<td>3</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_39789</td>
<td>84</td>
<td>G</td>
<td>A</td>
<td>4</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_39798</td>
<td>222</td>
<td>G</td>
<td>A</td>
<td>7</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_40907</td>
<td>117</td>
<td>G</td>
<td>A</td>
<td>3</td>
<td>100.0</td>
<td>Exon</td>
<td>—</td>
<td>Alanine—Threonine</td>
</tr>
<tr>
<td>contig_45712</td>
<td>328</td>
<td>C</td>
<td>T</td>
<td>4</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_45712</td>
<td>354</td>
<td>G</td>
<td>A</td>
<td>3</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_49742</td>
<td>214</td>
<td>G</td>
<td>A</td>
<td>3</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_56325</td>
<td>66</td>
<td>G</td>
<td>A</td>
<td>6</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_57351</td>
<td>254</td>
<td>G</td>
<td>A</td>
<td>3</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_58421</td>
<td>172</td>
<td>C</td>
<td>T</td>
<td>6</td>
<td>100.0</td>
<td>Exon</td>
<td>—</td>
<td>Glutamic acid—Lysine</td>
</tr>
<tr>
<td>contig_62039</td>
<td>270</td>
<td>G</td>
<td>A</td>
<td>3</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_62723</td>
<td>298</td>
<td>C</td>
<td>T</td>
<td>5</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_62723</td>
<td>337</td>
<td>C</td>
<td>T</td>
<td>6</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_62723</td>
<td>357</td>
<td>G</td>
<td>A</td>
<td>5</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>contig_64128</td>
<td>139</td>
<td>G</td>
<td>A</td>
<td>12</td>
<td>80.0</td>
<td>Exon</td>
<td>—</td>
<td>Hypothetical protein F775 00528 (Ae. tauschii)</td>
</tr>
<tr>
<td>contig_64143</td>
<td>143</td>
<td>C</td>
<td>T</td>
<td>4</td>
<td>100.0</td>
<td>Intron</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Fig. 6. Visualization and comparison of sequence of 4SsshL to find single nucleotide polymorphisms (SNPs) specific to ethyl methanesulfonate (EMS) mutant line T4B-4Sssh#1. Snapshot of a region of sequence comparison at contig_64128 position 139, between reference sequence T4B-4Sssh and Chr 4B substitution line CS(4B)4Sssh, both showing base G at that position as compared with the EMS-mutant line T4B-4Sssh#1 showing base A at that position. Since the sequence for Chinese spring does not exist for this contig, the SNP at position 139 is unique to T4B-4Sssh#1.

triticic, respectively; Bouyioukos et al., 2013] produced a genetic map of 4Sssh (Yu et al., unpublished data, 2013; Yu et al., 2017) that was not completely collinear with rice,
of chromosomes (Akhunov et al., 2003). Conserved synteny enables the exploitation of plants with smaller genomes, such as rice and *B. distachyon*, as new sources of markers. The extensive comparative mapping used in this study has allowed the reconstruction of a map of 4S^qhL, containing the Gc loci.

The work showed that even though there was a considerable level of synteny at the micro level between *Ae. sharonensis* 4S^qhL and wheat 4BL, considerable changes had occurred through inversions. Translocations involving the terminal regions of Triticeae chromosomes have been previously observed (Devos and Gale, 1992; Moore et al., 1993) and evidence indicates that the three ancestral genomes are themselves diverging more rapidly in these regions (Devos and Gale, 1992). It would have been interesting to see how the gene collinearity compares between 4S^qhL and the wheat 4DL chromosome to see if the S-genome of *Ae. sharonensis* is more closely related to the D-genome as shown by Marcussen et al. (2014) rather than the B-genome as was previously thought (Maestra and Naranjo, 1997). However very few BLAST hits were obtained on 4D that had ordered PM positions to make a comparative map.

The presence of a small introgression in T4B-4S^qhL#1, known to have a point mutation in the Gc breaker locus, as compared with that in ILs 8/2 and 8/9, allowed us to focus our analysis to a smaller region of the *Ae. sharonensis* genome. Spike fertility data of the deletion lines also supports the hypothesis that the Gc elements potentially exist in this smaller distal region of 4S^qhL. Lines 82_58, 89_9, 89_118 and 89_131, all with this region deleted, showed restoration of fertility indicating that the breaker element, heterozygous presence of which causes semisterility, potentially exists in this distal region of 4S^qhL. Lines 82_16 and 82_148 had a partial deletion in this region of the chromosome, but were semisterile, which could help in further mapping of the Gc region of chromosome 4S^qhL. Lines 82_579 and 82_689 were two of thirty sterile lines in the M1 population and also showed a deletion in the 4S^qhL introgression. Sterility would be an indication of the potential deletion of the inhibitor element however, irradiation could also have contributed to the sterile phenotype observed in these lines.

To find the mutation responsible for the fully fertile phenotype in line T4B-4S^qhL#1, a comparison of the sequence of the mutant introgression was made with it’s nonmutant sequence from the T4B-4S^qhL line using target capture and NGS. This work resulted in 18 potential candidate genes in *Ae. sharonensis* for the Gc breaker element GcB.

However, none of the samples exhibited coverage over the full targeted region. Possible causes for this include errors in assembling the reference genome sequence, poor read mapping (for repeated regions, for example), or biased amplification or sequencing of genomic DNA. The target capture probes were designed based purely on coding sequence with no account for intron positions or intergenic content since these sequences are not ordered in *Ae. sharonensis*. The final set of 143 CDS sequences totaled approximately 1 Mbp, but it was anticipated that the close sequence identity between homeologous genes in wheat and orthologous genes between wheat and *Ae. sharonensis* would allow the capture of ~3 Mbp of gene space (assuming three homoeologues per gene). Approximately 26 Mbp region was sequenced and assembled into contigs to form the reference genome. This is due to nontarget sequence capture and assembly and could have contributed to poor map reading of the samples onto the reference genome. Since the target capture was designed from *Ae. sharonensis* coding sequence, it is possible the resequencing of wheat and wheat ILs with this exon capture can be inefficient due to sequencing of a high proportion of intron sequence relatively to exons. Even though it has been suggested that intron size is not likely to be a major limiting factor in the success of exon capture in wheat (King et al., 2015), no such studies have been done in *Ae. sharonensis* to allow discounting large intron sequences as a contributing factor to the large amount of nontarget sequence captured in the *Ae. sharonensis* segments in wheat. It has also been shown that GC content affects PCR amplification efficiency (Strien et al., 2013), and target regions with an overall GC content higher than 60% or lower than 30% exhibit a significantly lower coverage (Henry et al., 2014). In addition, optimal parameters for mutation detection can change on data quality, efficiency of capture, sample type, and the specific goal of the experiment. We did anticipate that homologous and paralogous reads whose perfect target was absent from the reference might misalign during read-mapping and SNP detection, generating false positives at a range of frequencies that might be difficult to distinguish from true heterozygous mutations. But since the lines tested are reported to be homozygous, we hoped this would maximize the proportion of homozygous alleles and thereby simplify the analysis of SNPs in exon capture data in this pilot-scale experiment.

EMS has been shown to lead to predominantly G-A and C-T transitions in the mutations detected across several wheat genes (Chen et al., 2012; Uauy et al., 2009). We were able to classify the resulting SNPs as EMS or non-EMS according to the variant base and found that 43.7% of high-confidence SNPs detected (those with read support 10 and allele frequency 80%), which were specific to T4B-4S^qhL#1, were G-A or C-T transitions. This value is inconsistent with previous reports that suggest that EMS is potentially more specific in wheat than in other species such as rice (Henry et al., 2014). However, this nonspecificity can be attributed to the dilution of the detected SNP pool with heterozygous reads that are inherent within the three subgenomes of wheat. Thus, this detection of homoeologous SNPs between reads of the reference sequence and T4B-4S^qhL#1, enhanced by significant nontarget capture sequences, could explain the relatively lower proportion of EMS-type SNPs in our pilot-scale results than expected.

The assessment of the effect of these 22 mutations on gene function yielded six SNPs that were predicted to change the translated protein sequence. One of these
SNPs (contig_26579, position 67) showed sequence conservation with a pentatricopeptide repeat containing protein that is thought to be involved in transposition to unrelated chromosomal sites (Geddy and Brown, 2007). This finding might support the transposon theory suggested by Tsujimoto and Tsunewaki (1985) which was based on hybrid dysgenesis in Drosophila melanogaster, caused by P elements, where the symptoms include sterility, lethality, mutations, and chromosome breakage. Since these symptoms and the mechanism through which the mobile elements operate are very similar to Gc induced symptoms and the two-loci theory, Knight et al. (2015) discussed the hypothesis that the breaker may be a transposon similar to these telomeric P elements, and the inhibitor would be located close to the breaker in the subtelomeric region. Work is presently underway to confirm whether any of the 18 candidate genes identified are responsible for the Gc action.

A further 23,968 homozygous SNPs were found between Chinese Spring and the reference genome. After applying previous parameters, 1618 homozygous SNPs were unique to Chinese Spring and hundreds of SNP markers were obtained between Chinese Spring and Ae. sharonensis within the 4Sth region. These could be used in future deletion mapping experiments in case the above to exhaust the distal end of 4SthL allowing further investigation of sequence information and possible high-density SNPs. Hessian fly and greenbug (Gill et al., 1985).

Aegilops sharonensis has been reported to be a rich source of genetic diversity for biotic and abiotic stress tolerance. Studies have identified Ae. sharonensis accessions with resistance to many pathogens and pests, including powdery mildew, leaf rust, stem rust, and stripe rust (Gill et al., 1985; Olivera et al., 2007; Valkoun et al., 1985) and Hessian fly and greenbug (Gill et al., 1985). Ae. sharonensis has also been identified to be salt tolerant (Xu et al., 2013). The single dominant gene (designated LrAsH1644) conferring resistance to leaf rust race THBJ in Ae. sharonensis accession 1644 was reported to be on Chr 6Sth (Olivera et al., 2013). However, there are no reports of any important genes, apart from the Gc loci, on chromosome 4Sth. Numerous studies have successfully exploited the function of chromosomal breakage by Gc chromosomes to induce intergeneric translocations that import alien chromosomes segments or useful genes of the wild relatives in wheat from its wild relatives.

In conclusion, we were able to putatively order 54 SNP markers on the Ae. sharonensis 4SthL map containing the Gc locus, using deletion mapping and comparative genomics and generated hundreds of more SNPs between Ae. sharonensis 4SthL and wheat that can be used in future work to further fine map the Gc locus. To date, we have identified 18 candidates for the Gc breaker element.

Acknowledgments

This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) under research grant BB/H012834/1. The funding body played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. We are grateful to Prof. Bernd Friebe from Kansas State University, Dr. Shuhei Nasuda from Kyoto University, and Steve Reader from John Innes Centre for providing seeds for lines of interest. We are also grateful to Dr. Matthew Moscou from The Sainsburys laboratory, and Dr. Burkhard Steuer-nagel and Dr. Brande Wulff from John Innes Centre, for their scientific consultation. The authors declare that they have no conflicts of interest.

References

