Accuracy of Genomic Prediction in a Commercial Perennial Ryegrass Breeding Program

Dario Fè,* Bilal H. Ashraf, Morten G. Pedersen, Luc Janss, Stephen Byrne, Niels Roulund, Ingo Lenk, Thomas Didion, Torben Asp, Christian S. Jensen, and Just Jensen

Abstract
The implementation of genomic selection (GS) in plant breeding, so far, has been mainly evaluated in crops farmed as homogeneous varieties, and the results have been generally positive. Fewer results are available for species, such as forage grasses, that are grown as heterogeneous families (developed from multi-parent crosses) in which the control of the genetic variation is far more complex. Here we test the potential for implementing GS in the breeding of perennial ryegrass (Lolium perenne L.) using empirical data from a commercial forage breeding program. Biparental F2 and multiparental synthetic [SYN2] families of diploid perennial ryegrass were genotyped using genotyping-by-sequencing, and phenotypes for five different traits were analyzed. Genotypes were expressed as family allele frequencies, and phenotypes were recorded as family means. Different models for genomic prediction were compared by using practically relevant cross-validation strategies. All traits showed a highly significant level of genetic variance, which could be traced using the genotyping assay. While there was significant genotype x environment (G x E) interaction for some traits, accuracies were high among F2 families and between biparental F2 and multiparental SYN2 families. We have demonstrated that the implementation of GS in grass breeding is now possible and presents an opportunity to make significant gains for various traits.

Core Ideas
- High accuracies for genomic prediction in a perennial ryegrass breeding program
- The additive genetic variance can be traced by genotyping assays
- Predictions work across different generations and in different traits
- Good prospects for the implementation of genomic selection in perennial ryegrass

Perennial ryegrass is the most cultivated forage species in temperate regions across northwest Europe, America, South Africa, Japan, Australia, and New Zealand (Humphreys et al., 2010). It is an obligate allogamous species (Cornish et al., 1979) bred in genetically heterogeneous families. Breeding programs for this crop started around the 1920s, and since then, breeders have mainly relied on phenotypic recurrent selection of superior individuals (Wilkins and Humphreys, 2003;...
Conaghan and Casler, 2011; Hayes et al., 2013). Through
decades, this approach has led to significant improve-
ments in several characters such as rust resistance, spring
growth, and after-math heading. However, poor gains
have been achieved in traits like dry matter production
or seed yield (Sampoux et al., 2011). Furthermore, cur-
rent breeding programs tend to be expensive and time
consuming, needing from 3 to 5 yr for a selection cycle
and up to 15 yr for the release of a new cultivar (Casler
and Brummer, 2008; Posselt, 2010).

New perspectives were opened in the last decade by
the implementation of marker-assisted selection (MAS).
Analyses performed on perennial ryegrass revealed the
presence of several quantitative trait loci (QTL), uncov-
ering associations between different traits and certain
DNA regions (reviewed in Shinozuka et al., 2012).
Marker-assisted selection approaches were used in many
crop species, having a positive impact on breeding for
qualitative traits. However, this technique was less effec-
tive in improving complex traits (Moreau et al., 2004; Bernardo, 2008; Xu and Crouch, 2008), as such traits are
generally affected by many genes each with a small effect.
In many cases, those effects are too small to be detected.
That results both in a large number of false negatives and
in the occurrence of the so called Beavis effect (Beavis,
1998; Xu, 2003), which consists in a bias of the allelic
effect estimation because the estimated QTL effects are
actually sampled from a truncated distribution.

These problems may be overcome by the use of GS
(Meuwissen et al., 2001), which select the best individuals
and families based on their genomic estimated breeding
values (GEBVs). The calculation of GEBVs is performed
by using all markers at the same time, and it is known as
genomic prediction. Implementation of GS into breed-
ing programs is now possible through development of
new technologies that allow the deployment of high-
throughput genotyping assays in a cost-effective manner.
Using a high marker density, a large part of the causal
polymorphisms is expected to be in linkage disequil-
ibrium (LD) with at least one marker. In GS, the LD can be
also tracked across families, enabling the computation of
marker effects estimates at population level, while tra-
ditional MAS only allows such estimates at family level
(Jannink et al., 2010). Furthermore, using all markers
means that GS has the potential to explain the whole, or
a very large part of, total genetic variance, thus overcom-
ning the Beavis effect and leading to unbiased estimates of
the breeding value (Hayes et al., 2013).

The practical application of genomic prediction
implies different steps. In the first step, statistical models
are developed and tested on a training set of individu-
als or families that are both genotyped and phenotyped.
Such a population should contain as much variation as
possible, minimizing the level of relationship between
individuals (Pszczola et al., 2012). In the following step,
GEBVs for other individuals or families (validation set)
are estimated based on their genomic relationships with
the training set and without the need to phenotype them.

Genomic selection has become a commonly used
 technique in animal breeding (e.g., Hayes et al., 2009).
In crops, it has been widely investigated on simulated
data (reviewed in Jannink et al., 2010). The first studies
on empirical data were published in 2009 for maize (Zea
mays L.) and barley (Hordeum vulgare L.) (Lorenzana
and Bernardo, 2009; Piepho, 2009). Later studies also
included wheat (Triticum aestivum L.) and other species
(reviewed in Lin et al., 2014). The main focuses of these
studies were accuracy and comparison between differ-
ent statistical methodologies. Overall, GEBV predictions
for plants were significantly superior to the ones based
solely on phenotype. That was true both for simulated
and empirical data (Jannink et al., 2010; Lin et al., 2014)
especially in the case of traits with low heritabilities
and with a large training dataset. Furthermore, models
worked well for both polygenic and oligogenic traits
(Iwata and Jannink, 2011), also in strategies based on
multitrait indexes (Heffner et al., 2009). Reduction in
phenotyping is expected to significantly decrease the
length of the breeding cycles, resulting in higher genetic
gains per year (Jannink et al., 2010) and, potentially, in
a significant drop in costs of developing new lines. Heffner
et al. (2010) estimated the expected annual gain to exceed
present gains by about three times in maize and two
times in winter wheat. However, there are still concerns
about the impact of an extensive use of GS over the long
term (Heffner et al., 2009; Jannink et al., 2010; Jannink,
2010; Nakaya and Isobe, 2012), which, at the present state
of technology, make it difficult to completely replace the
traditional breeding strategies with GS.

Regarding forage species, the potential to implement
GS in ryegrass has been recently explored by Hayes et al.
(2013). Other studies have also investigated the potential
for GS in model species, white clover (Trifolium repens L.),
tall fescue (Festuca arundinacea Schreb.), and Phalaris
spp. (Simeão Resende et al., 2014; Forster et al., 2014).
Hayes et al. (2013) define perennial ryegrass as an optimal
target species for introducing GS because of the polygenic
nature of many of its commercial traits, which are usually
measured in the later part of the breeding cycle. How-
ever, they also emphasize the presence of three relevant
problems: (i) nonextensive LD, (ii) likely high effective
population size because of the outbreeding nature of the
species, and (iii) need of radical changes in the current
breeding schemes. The overall positive expectations were
confirmed by Fè et al. (2015a) who showed the superiority
of genomic prediction over MAS using heading date as
model trait with a very high heritability. However, the lit-
erature still lacks extensive studies performed on a wider
set of traits characterized by lower heritabilities.

The aim of this study is to investigate the possibility for
implementing GS in perennial ryegrass breeding by using
data from a commercial breeding program. The breed-
ing material consisted of families produced by DLF A/S.
Traits included in this report are: (i) resistance to crown
rust (caused by Puccinia coronata Corda f.sp. loli Brown),
which is, so far, the most serious foliar disease affecting
ryegrasses; (ii) seed yield; (iii) 1000-kernel weight; and (iv) quality parameters measured as fiber and fructan content.

Materials and Methods

Plant Material, Genomic, and Phenotypic Data

Data were collected from a total of 1918 families of perennial ryegrass, derived from the breeding program at DLF A/S (Store Heddinge, Denmark). The plant material consisted of two different sets of families:

Set 1 included 1791 biparental F2 families produced between 2000 and 2012 with parents chosen from 198 parental populations (PPs). The PPs were selected from a seed bank that included breeding material from DLF as well as varieties available on the market produced by DLF or other companies. The breeding procedure involved pair crosses between single plants from different PPs (each single plant was used only in one pair cross) followed by hand-harvesting from both parent plants, pooling and multiplication of the F1 seeds, and harvesting of F2 seeds as described in Fè et al. (2015b).

Set 2 included 127 multiparental synthetic (SYN2) families, each obtained by crossing five to 11 single plants from different F2 families originating from different PPs and previously produced SYN1 families. Fifty-six of the 127 SYN2 families were created by using single plants from the F2 families included in Set 1. We will refer to these families as SYN2a and to the remaining 71 families as SYN2b. The production of SYN2 families followed the same procedure described for Set 1, which involved pooling and multiplication of the seed in isolated plots. Single plants were selected from the best F2 families by visual merits and by synchronous heading time.

Seeds for all families were produced at DLF Research Division in Store Heddinge (Denmark) and then shipped and sown in trials at other locations across Europe.

Sequence data were produced by genotyping-by-sequencing (GBS) (Elshire et al., 2011), which can be used in breeding populations to estimate genome-wide allele frequency profiles (Byrne et al., 2013). The GBS sampling and library preparation were performed according to Byrne et al. (2013) and Elshire et al. (2011). The plant material for the GBS data was obtained from remnant F2 seeds. Samples were digested using ApeKI, a methylation-sensitive restriction enzyme (to target the low copy fraction of the genome) and ligated to adaptors for sequencing and barcodes for individual family identification. This makes it possible to have separate data sets for each family and to estimate allele frequencies at each single-nucleotide polymorphism (SNP) location within each F2–SYN1 family. We prepared 32 libraries, each with up to 64 families, and sequenced each library on multiple lanes on an Illumina HiSeq2000 (single-end). The average number of reads obtained for each family after basic data filtering was ~20 million. Data for each population were aligned against a draft sequence assembly (Byrne et al., 2015) and ~1.8 million SNPs were identified with per-family sequencing depth at a SNP ranging from 1 to 250 (upper limit) reads per family. Few SNP positions had more than 60 reads and we suspect that these reads may be originating from plastid genomes or from highly repetitive regions not captured in the draft assembly. We therefore decided to discard all SNPs with average depth >60. Further, SNPs with allele frequencies <0.02 or >0.98 were removed. After this filtering on sequencing depth and frequency, 1,447,122 SNPs were available for analysis.

Phenotypic data were collected on family means during the standard breeding procedures of DLF A/S. Analysis focuses on various traits with different heritability:

1. Crown rust resistance (CRR) measured by visual scoring during the period of maximum infection. The scale ranged from 1 (plant completely covered by rust) to 9 (no rust symptoms).
2. Seed yield (SY), expressed in g m⁻².
3. 1000-kernel weight (TKW), which is the weight of 1000 seeds (g). Five technical replicates for each family were sampled, weighted, and then counted by digital imaging.
4. Neutral detergent fiber (NDF), which is an indicator of the total fiber content (lignin, hemicellulose, and cellulose). It was measured in an ANKOM 2000 fiber analyzer according to the manufacturer’s instructions (Ankom Technology, 2013) and expressed as percentage of total dry matter content.
5. Fructan (FR), which is the predominant type of storage carbohydrate in perennial ryegrass. It was measured as described in Bertram et al. (2010) and expressed as percentage of the total dry matter.

The CRR was recorded over 13 yr (from 2001 to 2013) across five locations (Table 1). All fields were organized in trials, which were further divided in subtrials and plots. In Les Alleuds (France) and Flevo Polder (Netherlands), families were sown during spring in small plots (0.5 by 4 m) and scored in late summer to autumn after every crown rust attack (1–3 times per year). Plots were cut between the different scoring time points to make them independent. In the other locations, the trait was scored on standard sward plots, in which families were sown during summer and farmed over two cropping seasons according to local management schemes (Table 1). A detailed description of the field design is given in Fè et al. (2015b). The other traits were measured in Store Heddinge (Denmark) between 2001 and 2013. Families were sown during spring in 1.5 by 10 m plots and farmed until seed harvesting (first half of August in the following year). The NDF and FR were measured on samples that were cut on the day of heading and allowed to dry in the field for 24 h. However, because of the high number of plots, some families (especially intermediate ones) were cut several days after heading date. Families were always sown in replicates, except for CRR in 2001, in Store Heddinge and Didbrook. Replicates were always sown in different trials. The experimental design was rather unbalanced. The level of unbalance was lower in the case of...
CRR, for which almost all families were sown at least in two different locations and in two different years. Data for TKW were measured only on one of the two replicates. The position of families within trial was randomized. However, randomization across trials was not always optimal, especially in the oldest experiments, where the field design was related to heading date, resulting in a certain degree of assortment between trials and the pedigree.

A summary of the phenotypic data is presented in Table 2. For all traits, the number of phenotyped families and the number of locations, environments (location × year), and scores (location × year × scores) were recorded, along with the descriptive statistics (mean, standard deviation [SD], minimum, and maximum).

Statistical Models and Estimation of Genetic Parameters

Data were analyzed by using different linear mixed models. Models were tested and compared using F-tests for the fixed part and Akaike tests for the random part. Genomic information was incorporated by genomic best linear unbiased prediction (GBLUP) (Habier et al., 2007; VanRaden, 2008). Each trait was analyzed by two different models: Model GE with the genomic effect as the only genetic effect and Model GP, which includes both PP effect and the genomic effects, allowing for split of genetic effect in two components: one among PPs and one within PPs and among F2 families. The models that had the best fit to the data are presented below.

CRR:

- **Model GE:**
 \[y = X_{ts} + Z_i + Z_{il} + Z_{ily} + Z_{iys} + Z_{cs} + Z_{o} + \epsilon \]
 \[\text{[1]} \]

- **Model GP:**
 \[y = X_{ts} + Z_i + Z_{il} + Z_{ily} + Z_{iys} + Z_{cs} + Z_{o} + Z_p + Z_{pys} + \epsilon \]
 \[\text{[2]} \]

SY:

- **Model GE:**
 \[y = X_t + Z_i + Z_{ily} + Z_{c} + \epsilon \]
 \[\text{[3]} \]

- **Model GP:**
 \[y = X_t + Z_i + Z_{ily} + Z_{c} + Z_p + Z_{pys} + \epsilon \]
 \[\text{[4]} \]

TKW:

- **Model GE:**
 \[y = X_t + Z_i + Z_{c} + \epsilon \]
 \[\text{[5]} \]

- **Model GP:**
 \[y = X_t + Z_i + Z_{c} + Z_p + \epsilon \]
 \[\text{[6]} \]

NDF:

- **Model GE:**
 \[y = X_t + Z_i + Z_{c} + \epsilon \]
 \[\text{[7]} \]

- **Model GP:**
 \[y = X_t + Z_i + Z_{c} + Z_p + \epsilon \]
 \[\text{[8]} \]
where y is the vector of observations; X is the design matrix of fixed factor; t is the vector of trials within locations and years (YL); s is used only for CRR and refers to multiple scores performed within the same year; ts is the vector of trials within locations, years, and scores (YLST); d represents the difference between the date of heading and the date of harvest, expressed in number of days and divided in five classes (0–4, 5–8, 9–12, 13–16, > 16); td is the vector of d nested within YLTs; Z are design matrices of random factors; i is a vector of breeding values $\sim N(0, \mathbf{G}\sigma^2_g)$, where \mathbf{G} is the genomic relationship matrix; il is a vector of genotype \times location interactions (accounts for the presence of replicates in certain fields) $\sim N(0, \mathbf{I}\sigma^2_{ily})$; ily is a vector of genotype \times location \times year interactions $\sim N(0, \mathbf{I}\sigma^2_{ily})$; c is a vector of spatial effects within YLTs $\sim N(0, \mathbf{I}\sigma^2_{icy})$; p is a vector of the originating PPs $\sim N(0, \mathbf{P}\sigma^2_p)$, where \mathbf{P} is a relationship matrix weighting PPs $\sim N(0, \mathbf{P}\sigma^2_p)$; PP is the vector of PPs combinations; and ϵ is a vector of random residuals $\sim N(0, \mathbf{I}\sigma^2_{ep})$. In the models, CRR effects accounting for the interaction between single scores and the other factors are also present: $ilys$ is a vector of genotype \times location \times year \times score interactions $\sim N(0, \mathbf{I}\sigma^2_{ilys})$; $plys$ is the vector of interactions between PPs, location, year, and scores $\sim N(0, \mathbf{P}\sigma^2_{plys})$; pp is the vector of interaction between PPs $\sim N(0, \mathbf{P}\sigma^2_{pp})$; e is a vector of random residuals $\sim N(0, \mathbf{I}\sigma^2_{ep})$. In the models, only σ^2_{cly} was included to check the presence of nonadditive effects. A consequence of that, changes in frequencies (and in the between PPs and among F2 families component). That was taken into account by the use of a pedigree matrix, for the among PPs component and by G matrix, for the between PPs and among F2 families component. Assumptions are the same as stated in Fè et al. (2015b) except for the relatedness among PPs. Narrow-sense heritabilities (σ^2_e; across environments, scores, and PPs) were calculated for both Model GE and Model GP. Here, only equations for SY are displayed, as formulas for the other traits can be easily written by adding or removing variance components from the denominator:

$$h^2_n = \frac{\overline{G} \sigma^2_g}{(\overline{G} \sigma^2_g + \sigma^2_{cly} + \sigma^2_c + \sigma^2_{e})}$$ \[11\]

$$h^2_n = \frac{(\overline{G} \sigma^2_g + 2 \overline{P} \sigma^2_p)}{(\overline{G} \sigma^2_g + \sigma^2_{cly} + \sigma^2_c + 2 \overline{P} \sigma^2_p + \sigma^2_{cly} + \sigma^2_{e})}$$ \[12\]

where \overline{G} and \overline{P} are the average diagonals of \mathbf{G} and \mathbf{P}, respectively. Both are defined as the heritability of the family mean measured on a single plot. The component σ^2_e was added twice, as each row in the respective design matrix sums up to two (Supplemental Figure S1).

Cross-Validation Schemes

Prediction accuracies were first computed among the entire set of F$_2$ families using GBLUP. Phenotypes were corrected for the fixed effect by running the model on the whole dataset. The GEBVs were then estimated by
cross-validation by deleting phenotypes according to two different schemes that test for different hypothesis: (i) k-fold (k = 100), which tests predictions in case of presence of related individuals in the training and in the validation set, leaving out 1% of the families in each round, in random order, and (ii) pp-fold, which tests predictions in case of absence of related individuals in the training and in the validation set, estimating all the families originated by a certain PPs combination, after having left out everything that had at least a PP in common. As pp-fold implied a greater reduction in terms of training population than k-fold, a pp-like strategy was also tested to ensure a proper comparison. The pp-like strategy exactly replicated the cross-validation scheme used in pp-fold leaving out the same number of families in each cycle but choosing them at random instead than based on the PPs. This strategy ensures that the same size of training population is used in both schemes. All strategies were tested for both Model GE and Model GP. As the number of phenotyped families was different among traits and sets, to allow a proper comparison between accuracies, all models and strategies were also run on different sets with reduced population size consisting of randomly chosen F2 families. Such analyses were repeated 100 times, each time using a different set of randomly chosen F2 families, and the average predictive abilities and bias were calculated. The average accuracies (defined below) are reported in the result section. Finally, all F2 families were used to predict phenotypes for the three sets of synthetic families (SYN2, SYN2a, and SYN2b).

Predictive abilities and accuracies were calculated as described in Fé et al. (2015a). Briefly, accuracy, defined as the correlation between true breeding values and GEBVs (ρ̃), was estimated with the following equation (Su et al., 2012):

\[
\rho \hat{g}_k = \frac{\hat{f}_{ig} \hat{f}_{eg}}{\sqrt{\hat{f}_{ig}} \sqrt{\hat{f}_{eg}}}
\]

where \(\hat{f}_i \) represents the mean phenotypes corrected for the fixed effect and the numerator is the correlation between \(\hat{y}_i \) and GEBVs (predictive ability). The denominator represents the expected correlation between breeding values and corrected phenotypes and can be calculated from the following equation (Crossa et al., 2010):

\[
\rho_{y_{ig}} = \frac{\sigma_g^2 + \sigma_e^2/n}{\sigma_g^2 + \sigma_e^2/n}^{1/2}
\]

where \(\sigma_g^2 \) is the genomic variance, and \(n \) is the number of replicates per each genotype. That is equivalent to the square root of the heritability based on several observations and represents the upper limit for accuracy of predicting phenotypes. However, this equation refers to a simplified model having only genomic and residual variances. In this paper, the formula needs to account for the other random factors. Furthermore, as traits were analyzed with different models, different formulas were also used to compute \(\rho_{y_{ig}} \). Here, only equations for SY are reported, as formulas for other traits can be easily derived:

Table 3. Phenotypic variance \((\sigma^2_f) \) of F2 families and narrow-sense heritability \((h^2) \) across environment and scores (with SE) for all traits.

<table>
<thead>
<tr>
<th>Trait</th>
<th>(\sigma^2_f)</th>
<th>(h^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown rust resistance</td>
<td>1.914 (0.18)</td>
<td>0.27 (0.02)</td>
</tr>
<tr>
<td>Seed yield</td>
<td>477.2 (58.3)</td>
<td>0.42 (0.05)</td>
</tr>
<tr>
<td>1000-kernel weight</td>
<td>0.053 (0.01)</td>
<td>0.47 (0.14)</td>
</tr>
<tr>
<td>Neutral detergent fiber</td>
<td>10.68 (1.24)</td>
<td>0.54 (0.07)</td>
</tr>
<tr>
<td>Fructan</td>
<td>5.648 (0.58)</td>
<td>0.40 (0.06)</td>
</tr>
</tbody>
</table>

Model GE, \(\rho_{y_{ig}} = \frac{G \sigma_i (G \sigma^2_i + \sigma^2_{iy} / \overline{n}_{iy}) + (\sigma^2_c + \sigma^2_{i}) / \overline{n}^{(1/2)}} {16} \)

Model GP, \(\rho_{y_{ig}} = \sqrt{G \sigma^2_i + 2 F \sigma^2_p} \times \sqrt{G \sigma^2_i + 2 F \sigma^2_p + \sigma^2_{pp} + \sigma^2_s / \overline{n}_{iy} + (\sigma^2_c + \sigma^2_t) / \overline{n}^{(1/2)}} \)

where \(\overline{n} \) is the average number of replicates per each family across all fields \((n_{pl, families} / n_{families}) \) and \(\overline{n}_{iy} \) is the average number of environments per family \((n_{i, families} / n_{families}) \). Bias of the predictions was investigated by regressing \(\hat{y}_i \) on the breeding value estimates:

\[y_i = b_k + c; b = \sigma_{y_{ig}} / \sigma^2_g \]

A regression coefficient \((b) \) of 1 indicates no bias in the estimation of GEBVs. Comparison between Model GE and Model GP was assessed by correlating the respective solutions for GEBVs, and differences were tested using Hotelling–Williams test (Dunn and Clark, 1971) on \(\rho_{y_{ig}} \) using the R script developed by Christensen et al. (2012). In case the models gave a different correction for the fixed effect, \(\hat{y}_i \) was taken from the model that had the best fit to the data. Presence of reranking was tested by ranking families based on GEBVs from Model GE and Model GP, selecting the best 10%, and counting the number of families in common between the two different models.

Results

Variance Components and Heritabilities

For each trait, the total phenotypic variance for all F2 families is shown in Table 3 together with the heritabilities and their standard errors (SE). Heritabilities from Model GE and GP were not significantly different. For this reason, only results from Model GP are shown. The percentage of each variance component over the total phenotypic variance is displayed in Fig. 1 (numerical values are available in the Supplemental Material). Narrow-sense heritabilities ranged between 0.40 and 0.55 for SY, TKW, NDF, and FR. Heritability for CRR (0.27) was lower than for the other traits investigated.

In Fig. 1 and Supplemental Table S1 it is possible to distinguish between the amount of additive genomic variance that was present among PPs \((\sigma^2_p) \) and the one
within PPs (σ^2_g). Variance from PP (σ^2_p) was estimated to be 39 and 29% of the genomic variance in NDF and TKW, respectively. It was lower in SY (18%) and FR (16%) and very low in CRR, accounting for only 9% of the total genetic variance and the 2.5% of the phenotypic variance. The G \times E effects turned out to be low in SY, representing only 8.6% of the phenotypic variance, and large in CRR, where they accounted for 30% of the total variation. For CRR, the strongest effect (half of the total G \times E variation) was from the genome (+PPs) \times location \times year \times scores component. The other half of G \times E was divided between genome \times location (18%) and genome (+PPs) \times location \times year (32%).

Relationship Between Sets and Cross-Validations Schemes

Relationship between sets can be inferred from the box-plots of genomic relationships reported in Supplemental Fig. S2. Genomic relationships between F_2 families ranged from −0.2 to almost 1.0, indicating the presence of high relationship within this set. Off diagonals between F_2 and SYN$_2$ families showed a similar distribution but with less extreme values. As expected, relationships between F_2 and SYN$_1$ families were greater than the ones between F_2 and SYN$_2$ but not dramatically. Results from cross-validation are displayed in Table 4 and in Fig. 2. Probably as a result of the small number of families, accuracies for the three sets of SYN$_2$ families (SYN$_2$, SYN$_2$a, and SYN$_2$b) were not statistically different from each other. Therefore, only results for SYN$_2$ are reported. All predictive abilities (and accuracies) were significantly different from zero ($P < 0.001$). Scheme pp-like, depending on the model and trait, was either equal to k-fold or gave slightly lower accuracies with the highest drop being 4%. Therefore, results for that scheme were not reported. For Model GE, when related material was present in the training population (k-fold scheme), all accuracies were >0.50. The best estimates were registered for SY in both the full F_2 sets (Table 4) and in the sets with reduced population size (Fig. 2). The regression of corrected phenotypes on GEBVs did not indicate the presence of significant bias for TKW and FR. For the other traits, regression coefficients were between 1.12 and 1.18, indicating an upward bias in the variance of the genomic predictions. As expected, for all traits, increasing the number of individuals used to train the model led to an increase in accuracy (Fig. 2). This effect was mostly pronounced in population sizes up to 500 to 750 families, depending on the trait, except for FR, for which accuracies kept increasing significantly also with larger population sizes. Predictions for population sizes of <175 families are not shown because they were affected by very large SE and not indicative of any trend.

Accuracies, when predicting from unrelated families (pp-fold scheme), were significantly worse than the ones obtained for k-fold and pp-like (8–16% lower). Bias was generally higher but not significantly different from what was found for the k-fold scheme.
Table 4. For all traits and models, predictive ability (ρ_{f}), accuracy (ρ_{g}), and bias (with SE), for the k-fold and pp-fold cross-validation, and for the prediction of synthetic (SYN) families.

<table>
<thead>
<tr>
<th>Trait and model†</th>
<th>k-fold ρ_{f}</th>
<th>ρ_{g} Bias (SE)</th>
<th>pp-fold ρ_{f}</th>
<th>ρ_{g} Bias (SE)</th>
<th>$F_2 \rightarrow \text{SYN}2$ $\rho{\text{f}}$</th>
<th>ρ_{g} Bias (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown rust resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>0.58</td>
<td>0.68</td>
<td>1.18 (0.04)</td>
<td>0.45</td>
<td>0.53</td>
<td>1.38 (0.07)</td>
</tr>
<tr>
<td>GP***</td>
<td>0.57</td>
<td>0.69</td>
<td>1.27 (0.04)</td>
<td>0.46***</td>
<td>0.56</td>
<td>1.47 (0.07)</td>
</tr>
<tr>
<td>Seed yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>0.56</td>
<td>0.73</td>
<td>1.12 (0.04)</td>
<td>0.48</td>
<td>0.63</td>
<td>1.13 (0.05)</td>
</tr>
<tr>
<td>GP***</td>
<td>0.58**</td>
<td>0.75</td>
<td>1.09 (0.04)</td>
<td>0.48</td>
<td>0.62</td>
<td>1.17 (0.05)</td>
</tr>
<tr>
<td>1000-kernel weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>0.37</td>
<td>0.51</td>
<td>1.06 (0.08)</td>
<td>0.31</td>
<td>0.42</td>
<td>1.16 (0.11)</td>
</tr>
<tr>
<td>GP***</td>
<td>0.44*</td>
<td>0.65</td>
<td>0.99 (0.06)</td>
<td>0.37***</td>
<td>0.54</td>
<td>1.68 (0.13)</td>
</tr>
<tr>
<td>Neutral detergent fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>0.56</td>
<td>0.69</td>
<td>1.13 (0.05)</td>
<td>0.48</td>
<td>0.59</td>
<td>1.33 (0.07)</td>
</tr>
<tr>
<td>GP***</td>
<td>0.68***</td>
<td>0.81</td>
<td>1.02 (0.03)</td>
<td>0.56*</td>
<td>0.68</td>
<td>1.70 (0.08)</td>
</tr>
<tr>
<td>Fructan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>0.37</td>
<td>0.50</td>
<td>1.05 (0.07)</td>
<td>0.27</td>
<td>0.36</td>
<td>0.99 (0.09)</td>
</tr>
<tr>
<td>GP***</td>
<td>0.45***</td>
<td>0.60</td>
<td>0.99 (0.05)</td>
<td>0.31***</td>
<td>0.41</td>
<td>1.13 (0.09)</td>
</tr>
</tbody>
</table>

* Significant at the 0.05 probability level.
** Significant at the 0.01 probability level.
*** Significant at the 0.001 probability level.
† Asterisks indicate significant of differences from Akaike test between Model GE and GP.
‡ Asterisks for ρ_{f} indicate the significance of differences between ρ_{f} from Model GE and GP from Hotelling–Williams test.

Fig. 2. Accuracies in the reduced set of F_2 families for all traits in the k-fold cross-validation strategy for Model GE (gray line) and Model GP (black line). CRR, crown rust resistance; SY, seed yield; TKW, 1000-kernel weight; NDF, neutral detergent fiber; FR, fructan.
Table 5. Correlations between genomic estimated breeding values (GEBVs) from Models GE and GP and percentage of common F2 families in the best 10% for k-fold and pp-fold cross-validation.

<table>
<thead>
<tr>
<th>Trait</th>
<th>k-fold</th>
<th>pp-fold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GE(GE);GE(GP)</td>
<td>GP(GE);GP(GP)</td>
</tr>
<tr>
<td>Crown rust resistance</td>
<td>0.97</td>
<td>0.84</td>
</tr>
<tr>
<td>Seed yield</td>
<td>0.97</td>
<td>0.82</td>
</tr>
<tr>
<td>1000-kernel weight</td>
<td>0.93</td>
<td>0.76</td>
</tr>
<tr>
<td>Neutral detergent fiber</td>
<td>0.94</td>
<td>0.72</td>
</tr>
<tr>
<td>Fructan</td>
<td>0.94</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Finally, prediction of multiparental SYN2 families from biparental F1 families (Table 4) showed high accuracies for SY (0.50), FR (0.53), and CRR (0.68). Because of the low number of families (only 16) it was not possible to get significant accuracies for SYN2 families in NDF. Bias for SYN2 families’ prediction was not significant.

Implementation of Parental Populations Effect

The inclusion of PPs effect generally improved predictions. The Akaike test showed Model GP to have a best fit to the data in all traits. When breeding values were predicted, also from related families (k-fold cross-validation), predictive ability (and accuracy) was significantly higher for all traits, except for CRR. However, for CRR, as shown in Fig. 2, Model GP gave better predictions in case of smaller training population sizes. The increase in predictive abilities was moderate for SY (+0.02) and very high for NDF, FR, and TKW (~ +10). However, correlating GEBVs with the same \(\bar{y}_i \) showed the actual increase in correlation to be \(\leq 0.04 \). For TKW, the \(p \)-value was higher because of the smaller amount of data and the larger error. After PPs implementation, the best accuracy was obtained for NDF for both large and small training population size. Including PPs also decreased the bias in all traits (especially for NDF) with the exception of CRR.

When no related families were present in training and validation set (pp-fold scheme), the implementation of PPs had smaller effect on accuracies for NDF and no effect for SY. On the other hand, it caused a significant improvement in the case of CRR, TKW, and FR. No positive effect was found for bias; regression coefficients (\(b \)) were significantly >1 for all traits.

Furthermore, including PPs in the prediction models generally showed significant effects on the ranking of families based on GEBVs (Table 5). Correlations between GEBVs from the two models (GE and GP) were always significantly different from 1 in the k-fold scheme (0.93–0.97). Values were higher in the pp-fold scheme (0.96–1.0), and not significantly different from 1 in the case of FR and SY. In these cases, the percentage of common families within the first 10% of the ranks (genotypes that will be selected for further steps of the breeding program) was around 90%. For correlations ~0.93, the percentage was between 65 and 75%.

Finally, PPs implementation did not result in any significant improvement for prediction of the SYN2 families in terms of predictive ability and accuracy nor in terms of bias.

Discussion

The present study demonstrates the potential to implement GS in breeding programs for perennial ryegrass, confirming expectations from previous theoretical studies (Hayes et al., 2013).

Variance Components and Heritabilities

A considerable amount of additive genetic variance (\(\sigma^2_g \)) was found in all traits. A large contribution to the total variance for CRR also came from \(G \times E \) interactions, especially from the genotype \(\times \) environment \(\times \) scoring component (\(\sigma^2_{gE} + \sigma^2_{E} \)). This observation agrees with the current state of knowledge on this trait, which is believed to be determined by both quantitative genes, mainly involved in slow-rusting resistance, and major genes, likely responsible for race-specific resistance (Dracatos et al., 2010). The size of \(\sigma^2_{E} \) relative to \(\sigma^2_g \) and \(\sigma^2_{gE} \) indicates that the level of \(G \times E \) within fields and years was greater than the level of variation between locations and environments. This may not be surprising, as CRR was shown to be highly affected by a wide range of environmental and physiological factors such as temperature, light, relative humidity, leaf surface topography, and health and susceptibility of the host plant (Dracatos et al., 2010). The pathogen also seems to display a significant genetic variation and constantly migrates and rapidly evolves through mutations, recombination, and crosses between different races (Dracatos et al., 2010).

Regarding FR, concerns may be raised by the significance of the factor \(d \) (difference between heading date and actual harvest date), which also showed to vary across trials. This fact may be related with the high variability over time of FR content, which was also shown to be subject to diurnal regulation (Longland et al., 1999). We did not observe similar effects on NDF, which is another forage quality trait. Neutral detergent fiber accounts for most the structural parts of the plant (cellulose, hemicellulose, and lignin), and previous investigations revealed that while NDF is a major environmental and physiological factors such as temperature, light, relative humidity, leaf surface topography, and health and susceptibility of the host plant (Dracatos et al., 2010). The pathogen also seems to display a significant genetic variation and constantly migrates and rapidly evolves through mutations, recombination, and crosses between different races (Dracatos et al., 2010).

The level of \(\sigma^2_g \) compared with \(\sigma^2_{E} \) showed the total genetic variance to be greater within PPs than among PPs. This observation was previously reported by Fè et al. (2015b) on a subset of this plant material and was true for a wide set of traits with the exception of heading date. This can be explained by the fact that families and plants are usually crossed with genetic material that has similar heading date. This assortative mating was never performed for NDF, FR, SY, or TKW, so the degree of variance between PPs may be due to a certain degree of correlation with heading date. For NDF and FR, this correlation has been documented in previous studies (Humphreys, 1991; Sampoux et al., 2011).
Cross-Validations: General Trends

Predictive abilities and accuracies were high for all traits. The GEBV estimations were better when families were predicted from related breeding material (scheme \(k \)-fold and \(pp \)-like) but were significantly worse when related individuals were left out from the training population (scheme \(pp \)-fold). In a standard breeding program, where new PPs are regularly added to an existing genetic pool, the situation is likely to be intermediate between \(k \)-fold and \(pp \)-fold. Therefore, to improve predictions, it may be a good idea to always phenotype the newly introduced PPs or a part of their offspring.

Analysis on different population sizes showed that for almost all traits under the present breeding scheme, at least 500 families are needed in the training population. The same outcome was previously reported on the same breeding material for heading date (Fè et al., 2015a). Therefore, it may be that the relation between training population size and accuracy depends mainly on the population structure rather than on the nature of the trait. The exception of FR may be related to the higher number of fixed factors in the models shown in Eq. [9] and [10], which limits the statistical power of the predictions.

Predictions of multiparental SYN\(_2\) families were possible only for CRR, SY, FR, and for a small set of families because of lack of records. Estimates for the two traits cannot be directly compared with each other because the phenotypic dataset for CRR and SY only had a few families in common. Accuracies for SYN, families were remarkably high and showed good possibilities for predicting breeding values. That was true even for SYN\(_2\) families that originated by breeding material not included in Set 1. This fact is likely to be related to a certain degree of relationship between F\(_2\) and SYN\(_b\) families (Supplemental Fig. S2), which probably arises from relationship between PPs.

The bias found among F\(_2\) families indicated a general tendency in predicting GEBVs with a too small variance, which may be related to the partial confounding between the trials and the pedigree. Such unbalance can cause a small part of the genetic effect to be captured by the fixed part of the model.

Implementation of Parental Populations Effect

The inclusion of the PPs effect always improved the fit to the data, but its role in improving predictions was less clear. The effect was of course higher in traits characterized by a large variance among PPs (\(\sigma^2_{pp} \)), which was the case for NDF and TKW. The increase in accuracy mainly depended on two factors: (i) actual improvement in breeding value estimation (quantifiable in an increase in predictive ability up to 4%), and (ii) better fit to the data and, consequently, better correction for the fixed effect. The second point is especially important for NDF, and it may be related to the field design in which PPs and trial within locations and years effects were confounded to some degree. The lack of improvements when implementing PPs in the prediction of SYN\(_2\) families may be explained by the presence of a high number of PPs used to generate the SYN\(_2\) families.

Regarding bias, the reduction brought by Model GP in the \(k \)-fold scheme, compared with Model GE, may be explained by a better separation between the genetic and the spatial effect from the introduction of the effect of PPs (\(p \)). Furthermore, in many cases, including PPs in the model resulted in significant changes in the ranking of families based on GEBVs and, because of that, also in the list of families that will be selected for the following steps of the breeding program.

Cross-Validations: Trends for Each Trait

Results reported for SY were very encouraging, showing prediction accuracies of 0.75 when predicting among all breeding material and between 0.50 and 0.60 when predicting from families without PPs in common. The outcome is very positive also when compared with accuracies reported for other crops. So far, the trait has been widely investigated only in wheat, where accuracies where found between 0.2 and 0.79, and maize, which showed accuracies ranging from 0.42 to 0.5 (Lin et al., 2014). The high potential in breeding value prediction, together with a fairly high heritability, makes it a very promising target trait for GS implementation. A significant improvement for this trait will be extremely beneficial for breeders, as a poor seed production represents one of the most limiting factors in several breeding schemes. However, when improving SY, attention must be paid on its correlations with forage yield and digestibility. These correlations have been shown to be somewhat negative but possible to break in an efficient breeding scheme (Studer et al., 2008), especially if focusing on SY components such as tiller numbers or proportion of reproductive tillers.

Regarding CRR, to our knowledge, this paper represents the first example of prediction based on genomic information. However, articles were recently published on wheat focusing on similar diseases (yellow rust and stem rust) and showing overall good perspectives (Ornella et al., 2012; Crossa et al., 2014). Predictive abilities were variable ranging from zero to 0.80 depending on the environment and the nature of the breeding material. Predictive ability across populations was 0.62 (Crossa et al., 2014), which is similar to what was found in this paper for the \(k \)-fold scheme. In this study, accuracies were relatively high even in the \(pp \)-fold scheme and in predicting SYN\(_2\) families from F\(_2\) families despite the relatively low heritability. Overall, this study showed very good potential for predicting and improving the genomic effect acting across environments and scores; however, the issues concerning G \(\times \) E still need further attention. Because of the small \(\sigma^2_{G} \) and the large \(\sigma^2_{E} \), rather than focusing on breeding varieties for specific environment, it may be fruitful to test models that also include weather and physiological conditions to have a better model for G \(\times \) E interactions (e.g., Technow et al., 2015) and also develop models that account for different pathogen races.
Positive results were also achieved for NDF and, to a lesser extent, for TKW and FR. In this case, comparison with other species is complicated, as the number of publications is limited. Thousand-kernel weight was investigated in wheat giving accuracies between ~0.30 (Poland et al., 2012) and ~0.80 (Lado et al., 2013). Regarding fiber content, a study on sugarcane (Saccharum officinarum L.) (Gouy et al., 2013) reported predictive abilities up to 0.40 for acid detergent fiber, which is one component of NDF (Goering and Van Soest, 1970). For these traits, phenotyping the same families in another location may be useful to better understand the role of G × E interactions. Furthermore, for FR, in further studies, it will be very important to sample all families, ensuring similar sampling conditions (e.g., developmental stage and harvest hour).

Conclusions
This study demonstrates that the implementation of GS in grass breeding is possible and presents an opportunity to make significant gains for economically important traits. We found a significant level of genetic variance for all traits studied, a very large proportion of which could be traced by genomic information from genotyping assay.

Of concern is the presence of significant G × E interaction for some traits especially in resistance to crown rust. On the other hand, accuracies were high both among F₂ families and between biparental F₂ families and multiparental synthetics, demonstrating a potential for implementing genomic prediction at different stages of the breeding cycle and using different types of breeding material. Further studies are needed on determining the stages in which such implementation would be most effective and whether it would be advantageous to restructure the current breeding scheme.

Accuracies were significantly higher when training and validation set contained related individuals. The study also indicates an advantage in implementing the effect of PPs in the models for prediction compared with a model with genomic effects of F₂ alone. However, such advantage seems to depend on the mating structure, as it was shown to be low when families were originated from many PPs.

Acknowledgments
The project was financed by the Danish Ministry of Education through the Council for Industrial Ph.D. Education (11-109967), by the Danish Ministry of Food, Agriculture, and Fisheries through The Law of Innovation (3412-09-02602) and the Green Development and Demonstration Program (GUDP; 3405-11-0241), and by DLF A/S. The demonstration program is financed by the Danish Ministry of Food, Agriculture, and Fisheries through The Law of Innovation (3412-09-02602) and the Green Development and Demonstration Program (GUDP; 3405-11-0241), and by DLF A/S.

References

