Supplementary Material

Adsorbing versus non-adsorbing tracers for assessing pesticide transport in arable soils

Clara Torrentó(1), Volker Prasuhn(2), Ernst Spiess(2), Violaine Ponsin(1), Aileen Melsbach(3), Christina Lihl(3), Gaétan Glauser(4), Thomas B. Hofstetter(5), Martin Elsner(3) and Daniel Hunkeler(1)

(1) Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland
(2) Agroscope, Research Division, Agroecology and Environment, 8046 Zürich, Switzerland
(3) Institute of Groundwater Ecology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
(4) Neuchâtel Platform of Analytical Chemistry (NPAC), University of Neuchâtel, 2000 Neuchâtel, Switzerland
(5) Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland

Corresponding Author:
*Clara Torrentó Phone: +41 32 718 26 49; Fax: +41 32 718 26 03, e-mail: clara.torrento@unine.ch

Total number of pages (including cover): 7

Figures: 5

Tables: 1
Figure S1. Agroscope lysimeters facility used for the present experiments. Upper panel: corn growing in summer 2014. The roof covering the installation, the meteorological station and the capacitance soil moisture probes are shown. Lower panel: lysimeter weighting and leachate collection systems.
Figure S2. Accumulated values of the water balance components for gravel soil (L4)

Figure S3. Average monthly evapotranspiration and air temperature
FIGURE S4

A

- Water content gravel soil (L5)
- Drainage gravel soil (L5)
- ATR gravel soil (L4)
- Water content moraine soil (L9)
- Drainage moraine soil (L9)
- ATR moraine soil (L8)

Y-axis:
- Daily irrigation (mm)
- ΔSWS (mm)
- ATR (µg/L)

X-axis:
- Time since application (d)

Legend:
- Water content gravel soil (L5)
- Drainage gravel soil (L5)
- ATR gravel soil (L4)
- Water content moraine soil (L9)
- Drainage moraine soil (L9)
- ATR moraine soil (L8)
Figure S4. Daily irrigation, cumulative drainage, changes in soil water storage and ATR concentration during the first 375 days after application/injection.
A) Surface application in gravel (L4 and L5) and moraine soil (L8 and L9). B) Depth injection in gravel (L3 and L6) and moraine soil (L7 and L10).
Figure S5. DEA-to-ATR molar ratio (DAR) in the drainage water after surface application (upper panel) and depth injection (lower panel). Note that the y-scale is different for the two panels.
TABLE S1

Table S1. Average monthly sums of the water-balance components from the two soil types during 2014, 2015 and 2016

<table>
<thead>
<tr>
<th>Month</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravel</td>
<td>moraine</td>
<td>gravel</td>
</tr>
<tr>
<td></td>
<td>I D ΔSWS ET</td>
<td>I D ΔSWS ET</td>
<td>I D ΔSWS ET</td>
</tr>
<tr>
<td>Jan</td>
<td>60 70 -3 0</td>
<td>61 70 -4 0</td>
<td>23 10 1 12</td>
</tr>
<tr>
<td>Feb</td>
<td>73 61 12 1</td>
<td>74 62 14 2</td>
<td>58 19 20 20</td>
</tr>
<tr>
<td>Mar</td>
<td>7 39 -61 29</td>
<td>7 38 -66 36</td>
<td>47 30 -13 30</td>
</tr>
<tr>
<td>Apr</td>
<td>86 13 9 64</td>
<td>86 10 7 69</td>
<td>49 8 -1 42</td>
</tr>
<tr>
<td>May</td>
<td>109 7 50 52</td>
<td>105 7 54 44</td>
<td>169 109 -11 71</td>
</tr>
<tr>
<td>Jun</td>
<td>188 135 -41 95</td>
<td>196 143 -38 91</td>
<td>28 12 -103 119</td>
</tr>
<tr>
<td>Jul</td>
<td>87 12 13 62</td>
<td>88 10 17 61</td>
<td>74 4 -56 126</td>
</tr>
<tr>
<td>Aug</td>
<td>91 20 -60 131</td>
<td>91 16 -52 127</td>
<td>109 1 11 97</td>
</tr>
<tr>
<td>Sep</td>
<td>122 18 56 48</td>
<td>125 26 54 45</td>
<td>113 0 50 63</td>
</tr>
<tr>
<td>Oct</td>
<td>32 7 -3 28</td>
<td>32 11 -6 27</td>
<td>140 18 90 32</td>
</tr>
<tr>
<td>Nov</td>
<td>29 4 13 12</td>
<td>29 6 9 14</td>
<td>31 9 1 21</td>
</tr>
<tr>
<td>Dec</td>
<td>60 39 -2 23</td>
<td>56 43 -6 19</td>
<td>36 20 7 9</td>
</tr>
<tr>
<td>Total</td>
<td>943 425 -18 544</td>
<td>951 441 -18 537</td>
<td>877 240 -5 642</td>
</tr>
</tbody>
</table>