Supplementary Figures 1-4

TopCap: a Tool to Quantify Soil Surface Topology and Subsurface Structure

Amin Garbout, Craig J. Sturrock, Elena Armenise, Sujung Ahn, Robert W. Simmons, Stefan Doerr, Karl Ritz, and Sacha J. Mooney*

A. Garbout, Imaging and Analysis Centre (IAC), Natural History Museum, London SW7 5BD, UK; A. Garbout, C.J. Sturrock, K. Ritz, and S.J. Mooney, Division of Agriculture & Environmental Sciences, School of Biosciences, Univ. of Nottingham, Loughborough LE12 5RD, UK; E. Armenise, R.W. Simmons, and K. Ritz, School of Water Energy and Environment, Cranfield Univ., Cranfield MK43 0AL, UK; S. Ahn, Korea Forest Service, Seoul, Korea; S. Doerr, College of Science, Swansea Univ., Swansea SA2 8PP, UK. *Corresponding author (sacha.mooney@nottingham.ac.uk).
Supplementary Figure 1 Comparison of the output from SIOX (A) and TopCap (B) on porosity for three depth intervals (0-10, 10-20, & 20-30) and three pixel hole sizes (1, 2 & 6)
Supplementary Figure 2. Effect of rainfall duration (2, 5, 9 and 14 minutes: D2, D5, D9, D14) and soil type (Silty clay loam - ZCL; Sandy silt loam - SZL; Sandy loam - SL) on the unsaturated hydraulic conductivity (K_{un}) measured at -0.03 m pressure head. Different letters indicate differences at P < 0.05 according to LSD test performed on log-transformed data.

Supplementary Figure 3: Example of the output from TopCap from an undisturbed field soil. The soil texture is a sandy loam and was scanned at 30 µm voxel size. Several large, rounded macropores are visible near the surface which are attributable to earthworm activity. (a) raw greyscale CT image; b) binary out from TopCap with surface extracted; c) secondary binary image with porosity (green) below the surface segmented and extractable in sequential depth layers and d) 3D visualisation of soil surface (red).
Supplementary Figure 4: The effect of different closure coefficients (8-16) on the soil porosity as a function of depth