Leaching of Five Pesticides of Contrasting Mobility through Frozen and Unfrozen Soil

Roger Holten,* Mats Larsbo, Nicholas Jarvis, Marianne Stenrød, Marit Almvik, and Ole Martin Eklo

R. Holten, M. Stenrød, M. Almvik, O.M. Eklo, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, Dep. of Pesticides and Natural Products Chemistry, P.O. Box 115, NO-1431 Ås, Norway; R. Holten, O.M. Eklo, Norwegian Univ. of Life Sciences, Faculty of Biosciences, Dep. of Plant Sciences, P.O. Box 5003, N-1432 Ås, Norway; M. Larsbo, N. Jarvis, Swedish Agricultural Univ., Dep. of Soil and Environment, P.O. Box 7014 75007. Received 17 Nov. 2018. Accepted 21 Jan. 2019.
*Corresponding author (roger.holten@nibio.no).
Fig. S1: The accumulated amount of water that drained from frozen and unfrozen soil columns during four irrigation events of the Kroer loam topsoil and subsoil, plotted against time. The vertical dotted line illustrates the end of the irrigations. During the second irrigation, some of the early samples from the subsoil were lost due to leakages through the thermistor holes. The same legend apply to all plots (Figure copied from Holten et al. (2018)).
Fig. S2: The accumulated amount of water that drained from frozen and unfrozen soil columns during three irrigation events of the Hov silt topsoil and subsoil, plotted against time. The vertical dotted line illustrates the end of the irrigations. Different time scales are due to large variations in infiltration times. Only one sample was collected for each frozen subsoil column at the first irrigation due to very little percolation. The same legend apply to all plots (Figure copied from Holten et al. (2018)).